Skip to main content

Advertisement

Log in

Biogenesis, evolution and functional targets of microRNA-125a

  • Review
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

MicroRNAs are small non-coding RNAs that regulate gene expression at post-transcriptional level by inhibiting translation of complementary mRNAs and/or targeting them for degradation. MicroRNAs play crucial roles in development, cell differentiation, and apoptosis. In addition, recent studies indicate that they are important regulators of virus–host interactions. MicroRNA-125a is a homolog of C. elegans lin-4, the first discovered microRNA, shown to dictate the onset of larval stages in the nematode. In this review, we focus on the gene structure of microRNA-125a, its evolution, its expression pattern in mammalian organs and tissues, and its functional targets. Overall, the available data indicate that microRNA-125a plays crucial roles both in development and in the adult tissues. In fact, it (1) contributes to the control of phase transitions in development and/or cell differentiation; (2) regulates the expression of several target proteins that are involved in cell proliferation, apoptosis, and migration; (3) interferes with the expression of the hepatitis B virus surface antigen in liver cells, thus counteracting viral replication. These findings suggest that delivery of microRNA-125a mimics or treatments that modulate its cellular expression may be valuable tools for the development of new therapeutic strategies for human diseases, including cancer and viral hepatitis B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

miRNA:

MicroRNA

pre-miRNA:

MicroRNA precursor

RISC:

RNA-induced silencing complex

HCC:

Hepatocellular carcinoma

HBV:

Hepatitis B virus

References

  • Aloia L, Parisi S, Fusco L, Pastore L, Russo T (2010) Differentiation of embryonic stem cells 1 (Dies1) is a component of bone morphogenetic protein 4 (BMP4)signaling pathway required for proper differentiation of mouse embryonic stem cells. J Biol Chem 285:7776–7783. doi:10.1074/jbc.M109.077156

    Article  PubMed  CAS  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Berkhout B, Jeang KT (2011) MicroRNAs in viral gene regulation. Biochim Biophys Acta 1809:587. doi:10.1016/j.bbagrm.2011.10.009

    Article  PubMed  CAS  Google Scholar 

  • Bi Q, Tang S, Xia L, Du R, Fan R, Gao L, Jin J, Liang S, Chen Z, Xu G, Nie Y, Wu K, Liu J, Shi Y, Ding J, Fan D (2012) Ectopic expression of miR-125a inhibits the proliferation and metastasis of hepatocellular carcinoma by targeting MMP11 and VEGF. PLoS One 7:e40169. doi:10.1371/journal.pone.0040169

    Article  PubMed  CAS  Google Scholar 

  • Caygill EE, Johnston LA (2008) Temporal regulation of metamorphic processes in drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr Biol 18:943–950

    Article  PubMed  CAS  Google Scholar 

  • Coppola N, Potenza N, Pisaturo M, Mosca N, Tonziello G, Signoriello G, Messina V, Sagnelli C, Russo A, Sagnelli E (2013) Liver microRNA hsa-miR-125a-5p in HBV chronic infection: correlation with HBV replication and disease progression. PLoS One. doi:10.1371/journal.pone.0065336

  • Cortez MA, Nicoloso MS, Shimizu M, Rossi S, Gopisetty G, Molina JR, Carlotti C Jr, Tirapelli D, Neder L, Brassesco MS, Scrideli CA, Tone LG, Georgescu MM, Zhang W, Puduvalli V, Calin GA (2010) miR-29b and miR-125a regulate podoplanin and suppress invasion in glioblastoma. Gen Chrom Can 49:981–990

    Article  CAS  Google Scholar 

  • Cowden Dahl KD, Dahl R, Kruichak JN, Hudson LG (2009) The epidermal growth factor receptor responsive miR-125a represses mesenchymal morphology in ovarian cancer cells. Neoplasia 11:1208–1215

    PubMed  CAS  Google Scholar 

  • Ely A, Naidoo T, Arbuthnot P (2009) Efficient silencing of gene expression with modular trimeric Pol II expression cassettes comprising microRNA shuttles. Nucleic Acids Res 37:e91. doi:10.1093/nar/gkp446

    Article  PubMed  Google Scholar 

  • Esquela-Kerscher A, Slack FJ (2006) Oncomirs––microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Huntzinger E, Izaurralde E (2008) Getting to the root of miRNA-mediated gene silencing. Cell 132:9–14

    Article  PubMed  CAS  Google Scholar 

  • Feng C, Li J, Ruan J, Ding K (2012) MicroRNA-125a inhibits cell growth by targeting glypican-4. Glycoconj J 29:503–511

    Article  PubMed  CAS  Google Scholar 

  • Ferretti E, De Smaele E, Po A, Di Marcotullio L, Tosi E, Espinola MS, Di Rocco C, Riccardi R, Giangaspero F, Farcomeni A, Nofroni I, Laneve P, Gioia U, Caffarelli E, Bozzoni I, Screpanti I, Gulino A (2009) MicroRNA profiling in human medulloblastoma. Int J Cancer 124:568–577

    Article  PubMed  CAS  Google Scholar 

  • Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179. doi:10.1146/annurev.med.59.053006.104707

    Article  PubMed  CAS  Google Scholar 

  • Gerrits A, Walasek MA, Olthof S, Weersing E, Ritsema M, Zwart E, van Os R, Bystrykh LV, de Haan G (2012) Genetic screen identifies microRNA cluster 99b/let-7e/125a as a regulator of primitive hematopoietic cells. Blood 119:377–387

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Bateman A, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Wu Y, Hartley RS (2009) MicroRNA-125a represses cell growth by targeting HuR in breast cancer. RNA Biol 6:575–583

    Article  PubMed  CAS  Google Scholar 

  • Guo S, Lu J, Schlanger R, Zhang H, Wang JY, Fox MC, Purton LE, Fleming HH, Cobb B, Merkenschlager M, Golub TR, Scadden DT (2010) MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci U S A 107:14229–14234

    Article  PubMed  CAS  Google Scholar 

  • Guzman-Villanueva D, El-Sherbiny IM, Herrera-Ruiz D, Vlassov AV, Smyth HD (2012) Formulation approaches to short interfering RNA and microRNA: challenges and implications. J Pharm Sci 101:4046–4066. doi:10.1002/jps.23300

    Article  PubMed  CAS  Google Scholar 

  • Haasnoot J, Berkhout B (2011) RNAi and cellular miRNAs in infections by mammalian viruses. Methods Mol Biol 721:23–41. doi:10.1007/978-1-61779-037-9_2

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM (2005) Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett 579:5822–5829

    Article  PubMed  CAS  Google Scholar 

  • Hanson EK, Lubenow H, Ballantyne J (2009) Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem 387(2):303–314

    Article  PubMed  CAS  Google Scholar 

  • Hemida MG, Ye X, Thair S, Yang D (2010) Exploiting the therapeutic potential of microRNAs in viral diseases: expectations and limitations. Mol Diagn Ther 14:271–282

    Article  PubMed  CAS  Google Scholar 

  • Herrera BM, Lockstone HE, Taylor JM, Wills QF, Kaisaki PJ, Barrett A, Camps C, Fernandez C, Ragoussis J, Gauguier D, McCarthy MI, Lindgren CM (2009) MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of type 2 diabetes. BMC Med Genomics 2:54. doi:10.1186/1755-8794-2-54

    Article  PubMed  Google Scholar 

  • Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, Qin L, Wu X, Zheng Y, Yang Y, Tian W, Zhang Q, Wang C, Zhang Q, Zhuang SM, Zheng L, Liang A, Tao W, Cao X (2011) Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 19:232–243

    Article  PubMed  CAS  Google Scholar 

  • Keller A, Leidinger P, Gislefoss R, Haugen A, Langseth H, Staehler P, Lenhof HP, Meese E (2011) Stable serum miRNA profiles as potential tool for non-invasive lung cancer diagnosis. RNA Biol 8:506–516

    Article  PubMed  CAS  Google Scholar 

  • Kim JK, Noh JH, Jung KH, Eun JW, Bae HJ, Kim MG, Chang YG, Shen Q, Park WS, Lee JY, Borlak J, Nam SW (2012a) Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b. Hepatology. doi:10.1002/hep.26101

    Google Scholar 

  • Kim SW, Ramasamy K, Bouamar H, Lin AP, Jiang D, Aguiar RC (2012b) MicroRNAs miR-125a and miR-125b constitutively activate the NF-κB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). Proc Natl Acad Sci U S A 109:7865–7870

    Article  PubMed  CAS  Google Scholar 

  • Kuhn DE, Martin MM, Feldman DS, Terry AV Jr, Nuovo GJ, Elton TS (2008) Experimental validation of miRNA targets. Methods 44:47–54

    Article  PubMed  CAS  Google Scholar 

  • Kurreck J (2009) RNA interference: from basic research to therapeutic applications. Angew Chem Int Ed Engl 48:1378–1398. doi:10.1002/anie.200802092

    Article  PubMed  CAS  Google Scholar 

  • Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  PubMed  CAS  Google Scholar 

  • Laneve P, Di Marcotullio L, Gioia U, Fiori ME, Ferretti E, Gulino A, Bozzoni I, Caffarelli E (2007) The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proc Natl Acad Sci U S A. 104:7957–7962

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  PubMed  CAS  Google Scholar 

  • Li W, Duan R, Kooy F, Sherman SL, Zhou W, Jin P (2009) Germline mutation of microRNA-125a is associated with breast cancer. J Med Genet 46:358–360

    Article  PubMed  CAS  Google Scholar 

  • Li D, Yang P, Xiong Q, Song X, Yang X, Liu L, Yuan W, Rui YC (2010) MicroRNA-125a/b-5p inhibits endothelin-1 expression in vascular endothelial cells. J Hypertens 28:1646–1654

    Article  PubMed  CAS  Google Scholar 

  • Liu YP, Berkhout B (2013) Design of lentivirally expressed siRNAs. Methods Mol Biol 942:233–257. doi:10.1007/978-1-62703-119-6_13

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Luo G, Bai X, Wang XJ (2009a) Bioinformatic analysis of microRNA biogenesis and function related proteins in eleven animal genomes. J Genet Genomics 36:591–601

    Article  PubMed  CAS  Google Scholar 

  • Liu YP, Gruber J, Haasnoot J, Konstantinova P, Berkhout B (2009b) RNAi-mediated inhibition of HIV-1 by targeting partially complementary viral sequences. Nucleic Acids Res 37:6194–6204

    Article  PubMed  CAS  Google Scholar 

  • Liu YP, Westerink JT, ter Brake O, Berkhout B (2011) RNAi-inducing lentiviral vectors for anti-HIV-1 gene therapy. Methods Mol Biol 721:293–311

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Llamb J, Peck D, Sweet-Cordero A, Ebert BL, Mark RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  PubMed  CAS  Google Scholar 

  • Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, Patel DJ (2005) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434:666–670

    Article  PubMed  CAS  Google Scholar 

  • Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK, Fedele V, Ginzinger D, Getts R, Haqq C (2006) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer. doi:10.1186/1476-4598-5-24

    PubMed  Google Scholar 

  • Moss EG, Lee RC, Ambros V (1997) The cold shock domain protein lin-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88:637–646

    Article  PubMed  CAS  Google Scholar 

  • Murphy D, Dancis B, Brown JR (2008) The evolution of core proteins involved in microRNA biogenesis. BMC Evol Biol 8:92. doi:10.1186/1471-2148-8-92

    Article  PubMed  Google Scholar 

  • Nana-Sinkam SP, Croce CM (2012) Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 93:98–104. doi:10.1038/clpt.2012.192

    Article  PubMed  Google Scholar 

  • Nishida N, Mimori K, Fabbri M, Yokobori T, Sudo T, Tanaka F, Shibata K, Ishii H, Doki Y, Mori M (2011) MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clin Cancer Res 17:2725–2733

    Article  PubMed  CAS  Google Scholar 

  • Olena AF, Patton JG (2010) Genomic organization of microRNAs. J Cell Physiol 222:540–545

    PubMed  CAS  Google Scholar 

  • Parisi S, Battista M, Musto A, Navarra A, Tarantino C, Russo T (2012) A regulatory loop involving Dies1 and miR-125a controls BMP4 signaling in mouse embryonic stem cells. FASEB J 26:3957–3968

    Article  PubMed  CAS  Google Scholar 

  • Park SO, Kumar M, Gupta S (2012) TGF-β and iron differently alter HBV replication in human hepatocytes through TGF-β/BMP signaling and cellular microRNA expression. PLoS One 7:e39276. doi:10.1371/journal.pone.0039276

    Article  PubMed  CAS  Google Scholar 

  • Potenza N, Papa U, Mosca N, Zerbini F, Nobile V, Russo A (2011) Human microRNA hsa-miR-125a-5p interferes with expression of hepatitis B virus surface antigen. Nucleic Acids Res 39:5157–5163

    Article  PubMed  CAS  Google Scholar 

  • Rothe D, Wajant G, Grunert HP, Zeichhardt H, Fechner H, Kurreck J (2010) Rapid construction of adeno-associated virus vectors expressing multiple short hairpin RNAs with high antiviral activity against echovirus 30. Oligonucleotides 20:191–198. doi:10.1089/oli.2010.0236

    Article  PubMed  CAS  Google Scholar 

  • Rothe D, Wade EJ, Kurreck J (2011) Design of small interfering RNAs for antiviral applications. Methods Mol Biol 721:267–292. doi:10.1007/978-1-61779-037-9_17

    Article  PubMed  CAS  Google Scholar 

  • Russo A, Potenza N (2011) Antiviral effects of human microRNAs and conservation of their target sites. FEBS Lett 585:2551–2555

    Article  PubMed  CAS  Google Scholar 

  • Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS, Benz CC (2007) Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem 282:1479–1486

    Article  PubMed  CAS  Google Scholar 

  • Sun D, Rösler C, Kidd-Ljunggren K, Nassal M (2010) Quantitative assessment of the antiviral potencies of 21 shRNA vectors targeting conserved, including structured, hepatitis B virus sites. J Hepatol 52:817–826

    Article  PubMed  CAS  Google Scholar 

  • Treiber T, Treiber N, Meister G (2012) Regulation of microRNA biogenesis and function. Thromb Haemost 107:605–610

    Article  PubMed  CAS  Google Scholar 

  • Umbach JL, Cullen BR (2009) The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev 23:1151–1164

    Article  PubMed  CAS  Google Scholar 

  • Vaz C, Ahmad HM, Sharma P, Gupta R, Kumar L, Kulshreshtha R, Bhattacharya A (2010) Analysis of microRNA transcriptome by deep sequencing of small RNA libraries of peripheral blood. BMC Genomics 11:288. doi:10.1186/1471-2164-11-288

    Article  PubMed  Google Scholar 

  • Wang G, Mao W, Zheng S, Ye J (2009) Epidermal growth factor receptor-regulated miR-125a-5p-a metastatic inhibitor of lung cancer. FEBS J 276:5571–5578

    Article  PubMed  CAS  Google Scholar 

  • Wienholds E, Plasterk RH (2005) MicroRNA function in animal development. FEBS Lett 579:5911–5922

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Belasco JG (2005) Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol Cell Biol 25:9198–9208

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Gao JS, Tang X, Tucker LD, Quesenberry P, Rigoutsos I, Ramratnam B (2009) MicroRNA 125a and its regulation of the p53 tumor suppressor gene. FEBS Lett 583:3725–3730

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Tang Y, Qu B, Cui H, Wang S, Wang L, Luo X, Huang X, Li J, Chen S, Shen N (2010) MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum 62:3425–3435

    Article  PubMed  CAS  Google Scholar 

  • Zhong X, Li N, Liang S, Huang Q, Coukos G, Zhang L (2010) Identification of microRNAs regulating reprogramming factor lin28 in embryonic stem cells and cancer cells. J Biol Chem 285:41961–41971

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicoletta Potenza or Aniello Russo.

Additional information

Communicated by J. Graw.

N. Potenza and A. Russo have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potenza, N., Russo, A. Biogenesis, evolution and functional targets of microRNA-125a. Mol Genet Genomics 288, 381–389 (2013). https://doi.org/10.1007/s00438-013-0757-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-013-0757-5

Keywords

Navigation