Skip to main content

Advertisement

Log in

Gene expression analysis distinguishes tissue-specific and gender-related functions among adult Ascaris suum tissues

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Over a billion people are infected by Ascaris spp. intestinal parasites. To clarify functional differences among tissues of adult A. suum, we compared gene expression by various tissues of these worms by expression microarray methods. The A. suum genome was sequenced and assembled to allow generation of microarray elements. Expression of over 40,000 60-mer elements was investigated in a variety of tissues from both male and female adult worms. Nearly 50 percent of the elements for which signal was detected exhibited differential expression among different tissues. The unique profile of transcripts identified for each tissue clarified functional distinctions among tissues, such as chitin binding in the ovary and peptidase activity in the intestines. Interestingly, hundreds of gender-specific elements were characterized in multiple non-reproductive tissues of female or male worms, with most prominence of gender differences in intestinal tissue. A. suum genes from the same family were frequently expressed differently among tissues. Transcript abundance for genes specific to A. suum, by comparison to Caenorhabditis elegans, varied to a greater extent among tissues than for genes conserved between A. suum and C. elegans. Analysis using C. elegans protein interaction data identified functional modules conserved between these two nematodes, resulting in identification of functional predictions of essential subnetworks of protein interactions and how these networks may vary among nematode tissues. A notable finding was very high module similarity between adult reproductive tissues and intestine. Our results provide the most comprehensive assessment of gene expression among tissues of a parasitic nematode to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson R, Schaible K, Heasman J, Wylie C (1999) Expression of the homophilic adhesion molecule, Ep-CAM, in the mammalian germ line. J Reprod Fertil 116:379–384

    Article  PubMed  CAS  Google Scholar 

  • Aranda B, Achuthan P, Alam-Faruque Y, Armean I, Bridge A, Derow C, Feuermann M, Ghanbarian AT, Kerrien S, Khadake J, Kerssemakers J, Leroy C, Menden M, Michaut M, Montecchi-Palazzi L, Neuhauser SN, Orchard S, Perreau V, Roechert B, van Eijk K, Hermjakob H (2010) The IntAct molecular interaction database in 2010. Nucl Acids Res 38:D525–D531

    Article  PubMed  CAS  Google Scholar 

  • Arbeitman MN, Furlong EE, Imam F, Johnson E, Null BH, Baker BS, Krasnow MA, Scott MP, Davis RW, White KP (2002) Gene expression during the life cycle of Drosophila melanogaster. Science 297:2270–2275

    Article  PubMed  CAS  Google Scholar 

  • Bader GD, Betel D, Hogue CWV (2003) BIND: the biomolecular interaction network database. Nucl Acids Res 31:248–250

    Article  PubMed  CAS  Google Scholar 

  • Bao Z, Eddy SR (2002) Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res 12:1269–1276

    Article  PubMed  CAS  Google Scholar 

  • Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, Hotez PJ (2006) Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367:1521–1532

    Article  PubMed  Google Scholar 

  • Brindley PJ, Mitreva M, Ghedin E, Lustigman S (2009) Helminth genomics: the implications for human health. PLoS Negl Trop Dis 3:e538

    Article  PubMed  Google Scholar 

  • Brownlee DJ, Holden-Dye L, Walker RJ, Fairweather I (1995) The pharynx of the nematode Ascaris suum: structure and function. Acta Biol Hung 46:195–204

    PubMed  CAS  Google Scholar 

  • Cantacessi C, Zou FC, Hall RS, Zhong W, Jex AR, Campbell BE, Ranganathan S, Sternberg PW, Zhu XQ, Gasser RB (2009) Bioinformatic analysis of abundant, gender-enriched transcripts of adult Ascaris suum (Nematoda) using a semi-automated workflow platform. Mol Cell Probes 23:205–217

    Article  PubMed  CAS  Google Scholar 

  • Capron A, Riveau G, Capron M, Trottein F (2005) Schistosomes: the road from host-parasite interactions to vaccines in clinical trials. Trends Parasitol 21:143–149

    Article  PubMed  CAS  Google Scholar 

  • Choi YJ, Ghedin E, Berriman M, McQuillan J, Holroyd N, Mayhew GF, Christensen BM, Michalski ML (2011) A deep sequencing approach to comparatively analyze the transcriptome of lifecycle stages of the filarial worm Brugia malayi. PLoS Negl Trop Dis 5:e1409

    Article  PubMed  CAS  Google Scholar 

  • Costa AF, Gomes-Ruiz AC, Rabelo EM (2008) Identification of gender-regulated genes in Ancylostoma braziliense by real-time RT-PCR. Vet Parasitol 153:277–284

    Article  PubMed  CAS  Google Scholar 

  • Crompton DW (2001) Ascaris and ascariasis. Adv Parasitol 48:285–375

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Sabo A, Berkowicz N, Meyer RR, Shotland Y, Johnson MR, Pepin KH, Wilson RK, Spieth J (2004) EAnnot: a genome annotation tool using experimental evidence. Genome Res 14:2503–2509

    Article  PubMed  CAS  Google Scholar 

  • Dold C, Holland CV (2011) Ascaris and ascariasis. Microbes Infect 13:632–637

    Article  PubMed  Google Scholar 

  • Donaldson JG, Radhakrishna H, Peters PJ (1995) The ARF GTPases: defining roles in membrane traffic and organelle structure. Cold Spring Harb Symp Quant Biol 60:229–234

    Article  PubMed  CAS  Google Scholar 

  • Evans H, Mello LV, Fang Y, Wit E, Thompson FJ, Viney ME, Paterson S (2008) Microarray analysis of gender- and parasite-specific gene transcription in Strongyloides ratti. Int J Parasitol 38:1329–1341

    Article  PubMed  CAS  Google Scholar 

  • Fincham JE, Markus MB, Adams VJ (2003) Could control of soil-transmitted helminthic infection influence the HIV/AIDS pandemic. Acta Trop 86:315–333

    Article  PubMed  Google Scholar 

  • Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer ELL, Bateman A (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–D251

    Article  PubMed  CAS  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge YC, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang JH (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

  • Ghedin E, Hailemariam T, DePasse JV, Zhang X, Oksov Y, Unnasch TR, Lustigman S (2009) Brugia malayi gene expression in response to the targeting of the Wolbachia endosymbiont by tetracycline treatment. PLoS Negl Trop Dis 3:e525

    Article  PubMed  Google Scholar 

  • Hagan P, Appleton CC, Coles GC, Kusel JR, Tchuem-TchuentÈ L-A (2004) Schistosomiasis control: keep taking the tablets. Trends Parasitol 20:92–97

    Article  PubMed  CAS  Google Scholar 

  • Harris MT, Lai K, Arnold K, Martinez HF, Specht CA, Fuhrman JA (2000) Chitin synthase in the filarial parasite, Brugia malayi. Mol Biochem Parasitol 111:351–362

    Article  PubMed  CAS  Google Scholar 

  • Haskins KA, Russell JF, Gaddis N, Dressman HK, Aballay A (2008) Unfolded protein response genes regulated by CED-1 are required for Caenorhabditis elegans innate immunity. Dev Cell 15:87–97

    Article  PubMed  CAS  Google Scholar 

  • Hotez PJ (2007) Neglected diseases and poverty in “The Other America”: the greatest health disparity in the United States? PLoS Negl Trop Dis 1:e149

    Article  PubMed  Google Scholar 

  • Huang X, Wang J, Aluru S, Yang SP, Hillier L (2003) PCAP: a whole-genome assembly program. Genome Res 13:2164–2170

    Article  PubMed  CAS  Google Scholar 

  • Huang CQ, Gasser RB, Cantacessi C, Nisbet AJ, Zhong W, Sternberg PW, Loukas A, Mulvenna J, Lin RQ, Chen N, Zhu XQ (2008) Genomic-bioinformatic analysis of transcripts enriched in the third-stage larva of the parasitic nematode Ascaris suum. PLoS Negl Trop Dis 2:e246

    Article  PubMed  Google Scholar 

  • Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18:S233–S240

    Article  PubMed  Google Scholar 

  • Jasmer DP, Yao C, Rehman A, Johnson S (2000) Multiple lethal effects induced by a benzimidazole anthelmintic in the anterior intestine of the nematode Haemonchus contortus. Mol Biochem Parasitol 105:81–90

    Article  PubMed  CAS  Google Scholar 

  • Jex AR, Liu S, Li B, Young ND, Hall RS, Li Y, Yang L, Zeng N, Xu X, Xiong Z, Chen F, Wu X, Zhang G, Fang X, Kang Y, Anderson GA, Harris TW, Campbell BE, Vlaminck J, Wang T, Cantacessi C, Schwarz EM, Ranganathan S, Geldhof P, Nejsum P, Sternberg PW, Yang H, Wang J, Gasser RB (2011) Ascaris suum draft genome. Nature 479:529–533

    Article  PubMed  CAS  Google Scholar 

  • Jiang D, Li B-W, Fischer PU, Weil GJ (2008) Localization of gender-regulated gene expression in the filarial nematode Brugia malayi. Int J Parasitol 38:503–512

    Article  PubMed  CAS  Google Scholar 

  • Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237

    Article  PubMed  CAS  Google Scholar 

  • Kimber MJ, McKinney S, McMaster S, Day TA, Fleming CC, Maule AG (2007) flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. FASEB J 21:1233–1243

    Article  PubMed  CAS  Google Scholar 

  • Kimble J, Sharrock WJ (1983) Tissue-specific synthesis of yolk proteins in Caenorhabditis elegans. Dev Biol 96:189–196

    Article  PubMed  CAS  Google Scholar 

  • Knox DP, Redmond DL, Newlands GF, Skuce PJ, Pettit D, Smith WD (2003) The nature and prospects for gut membrane proteins as vaccine candidates for Haemonchus contortus and other ruminant trichostrongyloids. Int J Parasitol 33:1129–1137

    Article  PubMed  CAS  Google Scholar 

  • Komuniecki PR, Johnson J, Kamhawi M, Komuniecki R (1993) Mitochondrial heterogeneity in the parasitic nematode, Ascaris suum. Exp Parasitol 76:424–437

    Article  PubMed  CAS  Google Scholar 

  • Leles D, Gardner SL, Reinhard K, Iniguez A, Araujo A (2012) Are Ascaris lumbricoides and Ascaris suum a single species? Parasit Vectors 5:42

    Article  PubMed  Google Scholar 

  • Li BW, Rush AC, Tan J, Weil GJ (2004a) Quantitative analysis of gender-regulated transcripts in the filarial nematode Brugia malayi by real-time RT-PCR. Mol Biochem Parasitol 137:329–337

    Article  PubMed  CAS  Google Scholar 

  • Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD, Chesneau A, Hao T, Goldberg DS, Li N, Martinez M, Rual JF, Lamesch P, Xu L, Tewari M, Wong SL, Zhang LV, Berriz GF, Jacotot L, Vaglio P, Reboul J, Hirozane-Kishikawa T, Li Q, Gabel HW, Elewa A, Baumgartner B, Rose DJ, Yu H, Bosak S, Sequerra R, Fraser A, Mango SE, Saxton WM, Strome S, Van Den Heuvel S, Piano F, Vandenhaute J, Sardet C, Gerstein M, Doucette-Stamm L, Gunsalus KC, Harper JW, Cusick ME, Roth FP, Hill DE, Vidal M (2004b) A map of the interactome network of the metazoan C. elegans. Science 303:540–543

    Article  PubMed  CAS  Google Scholar 

  • Li BW, Rush AC, Jiang DJ, Mitreva M, Abubucker S, Weil GJ (2011) Gender-associated genes in filarial nematodes are important for reproduction and potential intervention targets. PLoS Negl Trop Dis 5:e947

    Article  PubMed  CAS  Google Scholar 

  • Li BW, Wang Z, Rush AC, Mitriva M, Weil GJ (2012) Transcription profiling reveals stage- and function dependent expression patterns in the filarial nematode brugia malayi. BMC Genomics 13:184

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Zhu Y, Li C, Shang Y, Meng F, Chen S, Miao L (2011) Comparative transcriptome sequencing of germline and somatic tissues of the Ascaris suum gonad. BMC Genomics 12:481

    Article  PubMed  CAS  Google Scholar 

  • Martin J, Abubucker S, Heizer E, Taylor CM, Mitreva M (2012) Nematode.net update 2011: addition of data sets and tools featuring next-generation sequencing data. Nucleic Acids Res 40:D720–D728

    Article  PubMed  CAS  Google Scholar 

  • Michalski ML, Weil GJ (1999) Gender-specific gene expression in Brugia malayi. Mol Biochem Parasitol 104:247–257

    Article  PubMed  CAS  Google Scholar 

  • Mitreva M, Jasmer DP, Appleton J, Martin J, Dante M, Wylie T, Clifton SW, Waterston RH, McCarter JP (2004) Gene discovery in the adenophorean nematode Trichinella spiralis: an analysis of transcription from three life cycle stages. Mol Biochem Parasitol 137:277–291

    Article  PubMed  Google Scholar 

  • Mitreva M, Zarlenga DS, McCarter JP, Jasmer DP (2007) Parasitic nematodes–from genomes to control. Vet Parasitol 148:31–42

    Article  PubMed  CAS  Google Scholar 

  • Morimoto M, Zarlenga D, Beard H, Alkharouf N, Matthews BF, Urban JF (2003) Ascaris suum: cDNA microarray analysis of 4th stage larvae (L4) during self-cure from the intestine. Exp Parasitol 104:113–121

    Article  PubMed  CAS  Google Scholar 

  • Neveu C, Jaubert S, Abad P, Castagnone-Sereno P (2003) A set of genes differentially expressed between avirulent and virulent Meloidogyne incognita near-isogenic lines encode secreted proteins. Mol Plant Microbe Interact 16:1077–1084

    Article  PubMed  CAS  Google Scholar 

  • Nisbet AJ, Gasser RB (2004) Profiling of gender-specific gene expression for Trichostrongylus vitrinus (Nematoda: Strongylida) by microarray analysis of expressed sequence tag libraries constructed by suppressive-subtractive hybridisation. Int J Parasitol 34:633–643

    Article  PubMed  CAS  Google Scholar 

  • Passey RF, Fairbairn D (1957) The conversion of fat to carbohydrate during embryonation of ascaris eggs. Can J Biochem Physiol 35:511–525

    Article  PubMed  CAS  Google Scholar 

  • Prufer K, Muetzel B, Do HH, Weiss G, Khaitovich P, Rahm E, Paabo S, Lachmann M, Enard W (2007) FUNC: a package for detecting significant associations between gene sets and ontological annotations. BMC Bioinform 8:41

    Google Scholar 

  • Rajeevan MS, Ranamukhaarachchi DG, Vernon SD, Unger ER (2001) Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods 25:443–451

    Article  PubMed  CAS  Google Scholar 

  • Reinke V, Smith HE, Nance J, Wang J, Van Doren C, Begley R, Jones SJM, Davis EB, Scherer S, Ward S, Kim SK (2000) A Global Profile of Germline Gene Expression in C. elegans. Mol Cell 6:605–616

    Article  PubMed  CAS  Google Scholar 

  • Roberts TM, Stewart M (2000) Acting like actin: the dynamics of the nematode major sperm protein (MSP) cytoskeleton indicate a push-pull mechanism for amoeboid cell motility. J Cell Biol 149:7–12

    Article  PubMed  CAS  Google Scholar 

  • Sarwal R, Sanyal SN, Khera S (1989) Lipid metabolism in Trichuris globulosa (Nematoda). J Helminthol 63:287–297

    Article  PubMed  CAS  Google Scholar 

  • Scheibel T, Lindquist SL (2001) The role of conformational flexibility in prion propagation and maintenance for Sup35p. Nat Struct Biol 8:958–962

    Article  PubMed  CAS  Google Scholar 

  • Serio TR, Lindquist SL (2001) [PSI+], SUP35, and chaperones. Adv Protein Chem 57:335–366

    Article  PubMed  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed  CAS  Google Scholar 

  • Shingles J, Lilley CJ, Atkinson HJ, Urwin PE (2007) Meloidogyne incognita: molecular and biochemical characterisation of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi. Exp Parasitol 115:114–120

    Article  PubMed  CAS  Google Scholar 

  • Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3, art no 3

  • Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci U S A 100:12123–12128

    Article  PubMed  CAS  Google Scholar 

  • Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13:2129–2141

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi D, Qadota H, Kasuya K, Amano M, Kaibuchi K (2002) Isolation of the interacting molecules with GEX-3 by a novel functional screening. Biochem Biophys Res Commun 292:697–701

    Article  PubMed  CAS  Google Scholar 

  • Walhout AJ, Sordella R, Lu X, Hartley JL, Temple GF, Brasch MA, Thierry-Mieg N, Vidal M (2000) Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287:116–122

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Abubucker S, Martin J, Wilson RK, Hawdon J, Mitreva M (2010) Characterizing Ancylostoma caninum transcriptome and exploring nematode parasitic adaptation. BMC Genomics 11:307

    Article  PubMed  Google Scholar 

  • Wang J, Czech B, Crunk A, Wallace A, Mitreva M, Hannon GJ, Davis RE (2011) Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Res 21:1462–1477

    Article  PubMed  CAS  Google Scholar 

  • Yin Y, Martin J, Abubucker S, Scott AL, McCarter JP, Wilson RK, Jasmer DP, Mitreva M (2008) Intestinal Transcriptomes of Nematodes: Comparison of the Parasites Ascaris suum and Haemonchus contortus with the Free-living Caenorhabditis elegans. PLoS Neglected Tropical Diseases 2:e269

  • Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The analysis presented in this study was supported by NIH/NAIAD and NIH/NIGMS grants to M.M. We thank the Washington University microarray core Dr. Seth Crosby and Michael Heinz for their service and technical assistance and Dr. Richard Komuniecki for providing the A. suum tissues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makedonka Mitreva.

Additional information

Communicated by S. Hekimi.

Z. Wang and X. Gao contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2013_743_MOESM1_ESM.tif

Supplementary material 1 Fig. S1 Top scored active modules identified from (a) adult male A. suum tissues only or (b) adult female A. suum tissues only. Rows represent the identified active modules and columns represent the individual tissues (Hea, head; Int, intestine; Pha, pharynx; Ova, ovary; SemVes, seminal vesicle; Ute, uterus; Tes, testis). Each black filled area indicates the existence of an active module in a specific tissue. Modules are sorted according to the descending z scores (TIFF 83 kb)

438_2013_743_MOESM2_ESM.tif

Supplementary material 2 Fig. S2 Examples of the active modules common to the adult male A. suum tissues only that are centered at gene gei-4. Node indicates the protein members in the active module. Edge indicates the interaction between protein members. Conserved protein members between A. suum and C. elegans are highlighted by grey color. Interaction files for modules a, b and c are available at www.nematode.net (http://nematode.net/Ascaris_suum.html) (TIFF 313 kb)

438_2013_743_MOESM3_ESM.tif

Supplementary material 3 Fig. S3 Examples of the active modules common to the adult female A. suum tissues only that are centered at gene pgn-4. Node indicates the protein members in the active module. Edge indicates the interaction between protein members. Conserved protein members between A. suum and C. elegans are highlighted by grey color. Interaction files for modules a, b and c are available at www.nematode.net (http://nematode.net/Ascaris_suum.html) (TIFF 415 kb)

438_2013_743_MOESM4_ESM.tiff

Supplementary material 4 Fig. S4. Heatmap showing expression data for the 214 nucleotide sequence contigs that collectively formed 95 different A. suum intestinal gene families (Yin et al. 2008) found to be differentially expressed among the ten tissues investigated. Rows represent genes and columns represent different tissues. The gradation from green (highest similarity) to red (lowest similarity) depicts distance in relation to individual contigs and overall expression profiles among tissues. FemPha, female pharynx; MalPha, male pharynx; FemHea, female head; MalHea, male head; FemInt, female intestine; MalInt, male intestine; SemVes, seminal vesicle; Tes, testis; Ova, ovary; Ute, uterus (TIFF 1521 kb)

Supplementary material 5 Table S1 Primer sequences for qRT-PCR (XLS 32 kb)

Supplementary material 6 Table S2 Coefficients of microarray elements and the functional annotation (TXT 10893 kb)

438_2013_743_MOESM7_ESM.xls

Supplementary material 7 Table S3 qPCR validation of selected genes that showed the highest level of expression differences in microarray assays (XLS 21 kb)

Supplementary material 8 Table S4 Interpro annotations of top 20 tissues specific expressed genes (XLS 47 kb)

Supplementary material 9 Table S5 IDs of family members expressed significantly differently (XLS 2567 kb)

Supplementary material 10 Table S6 GO associations of A. suum elements represented on the microarray (XLS 99 kb)

438_2013_743_MOESM11_ESM.xls

Supplementary material 11 Table S7 Example genes that directly interact with gei-4 that are not included in Table 6 and display differential expression across adult A. suum tissues (XLS 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Gao, X., Martin, J. et al. Gene expression analysis distinguishes tissue-specific and gender-related functions among adult Ascaris suum tissues. Mol Genet Genomics 288, 243–260 (2013). https://doi.org/10.1007/s00438-013-0743-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-013-0743-y

Keywords

Navigation