Skip to main content

Advertisement

Log in

Transcriptional analysis of the titin cap gene

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Mutations in titin cap (Tcap), also known as telethonin, cause limb-girdle muscular dystrophy type 2G (LGMD2G). Tcap is one of the titin interacting Z-disc proteins involved in the regulation and development of normal sarcomeric structure. Given the essential role of Tcap in establishing and maintaining normal skeletal muscle architecture, we were interested in determining the regulatory elements required for expression of this gene in myoblasts. We have defined a highly conserved 421 bp promoter proximal promoter fragment that contains two E boxes and multiple putative Mef2 binding sequences. This promoter can be activated by MyoD and myogenin in NIH3T3 fibroblast cells, and maintains the differentiated cell-specific expression pattern of the endogenous Tcap in C2C12 cells. We find that while both E boxes are required for full activation by MyoD or myogenin in NIH3T3 cells, the promoter proximal E box has a greater contribution to activation of this promoter in C2C12 cells and to activation by MyoD in NIH3T3 cells. Together, the data suggest an important role for MyoD in activating Tcap expression through the promoter proximal E box. We also show that myogenin is required for normal expression in vivo and physically binds to the Tcap promoter during embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berkes CA, Tapscott SJ (2005) MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 16:585–595

    Article  CAS  PubMed  Google Scholar 

  • Berkes CA, Bergstrom DA, Penn BH, Seaver KJ, Knoepfler PS, Tapscott SJ (2004) Pbx marks genes for activation by MyoD indicating a role for a homeodomain protein in establishing myogenic potential. Mol Cell 14:465–477

    Article  CAS  PubMed  Google Scholar 

  • Blackwell TK, Weintraub H (1990) Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 250:1104–1110

    Article  CAS  PubMed  Google Scholar 

  • Blais A, Tsikitis M, Acosta-Alvear D, Sharan R, Kluger Y, Dynlacht BD (2005) An initial blueprint for myogenic differentiation. Genes Dev 19:553–569

    Article  CAS  PubMed  Google Scholar 

  • Bos JM, Poley RN, Ny M, Tester DJ, Xu X, Vatta M, Towbin JA, Gersh BJ, Ommen SR, Ackerman MJ (2006) Genotype-phenotype relationships involving hypertrophic cardiomyopathy-associated mutations in titin, muscle LIM protein, and telethonin. Mol Genet Metab 88:78–85

    Article  CAS  PubMed  Google Scholar 

  • Buas MF, Kabak S, Kadesch T (2010) The Notch effector Hey1 associates with myogenic target genes to repress myogenesis. J Biol Chem 285:1249–1258

    Article  CAS  PubMed  Google Scholar 

  • Buonanno A, Apone L, Morasso MI, Beers R, Brenner HR, Eftimie R (1992) The MyoD family of myogenic factors is regulated by electrical activity: isolation and characterization of a mouse Myf-5 cDNA. Nucleic Acids Res 20:539–544

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Kumar RM, Penn BH, Berkes CA, Kooperberg C, Boyer LA, Young RA, Tapscott SJ (2006) Global and gene-specific analyses show distinct roles for Myod and Myog at a common set of promoters. EMBO J 25:502–511

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Yao Z, Sarkar D, Lawrence M, Sanchez GJ, Parker MH, MacQuarrie KL, Davison J, Morgan MT, Ruzzo WL, Gentleman RC, Tapscott SJ (2010) Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Dev Cell 18:662–674

    Article  CAS  PubMed  Google Scholar 

  • Clark KA, McElhinny AS, Beckerle MC, Gregorio CC (2002) Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol 18:637–706

    Article  CAS  PubMed  Google Scholar 

  • Davie JK, Cho JH, Meadows E, Flynn JM, Knapp JR, Klein WH (2007) Target gene selectivity of the myogenic basic helix-loop-helix transcription factor myogenin in embryonic muscle. Dev Biol 311:650–664

    Article  CAS  PubMed  Google Scholar 

  • Davis RL, Cheng PF, Lassar AB, Weintraub H (1990) The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell 60:733–746

    Article  CAS  PubMed  Google Scholar 

  • Deato MD, Tjian R (2007) Switching of the core transcription machinery during myogenesis. Genes Dev 21:2137–2149

    Article  CAS  PubMed  Google Scholar 

  • Eftimie R, Brenner HR, Buonanno A (1991) Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc Natl Acad Sci USA 88:1349–1353

    Article  CAS  PubMed  Google Scholar 

  • Faulkner G, Lanfranchi G, Valle G (2001) Telethonin and other new proteins of the Z-disc of skeletal muscle. IUBMB Life 51:275–282

    Article  CAS  PubMed  Google Scholar 

  • Frank D, Kuhn C, Katus HA, Frey N (2006) The sarcomeric Z-disc: a nodal point in signalling and disease. J Mol Med 84:446–468

    Article  CAS  PubMed  Google Scholar 

  • Furukawa T, Ono Y, Tsuchiya H, Katayama Y, Bang ML, Labeit D, Labeit S, Inagaki N, Gregorio CC (2001) Specific interaction of the potassium channel beta-subunit minK with the sarcomeric protein T-cap suggests a T-tubule-myofibril linking system. J Mol Biol 313:775–784

    Article  CAS  PubMed  Google Scholar 

  • Gregorio CC, Trombitas K, Centner T, Kolmerer B, Stier G, Kunke K, Suzuki K, Obermayr F, Herrmann B, Granzier H, Sorimachi H, Labeit S (1998) The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity. J Cell Biol 143:1013–1027

    Article  CAS  PubMed  Google Scholar 

  • Grounds MD, Garrett KL, Lai MC, Wright WE, Beilharz MW (1992) Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tissue Res 267:99–104

    Article  CAS  PubMed  Google Scholar 

  • Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN, Klein WH (1993) Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364:501–506

    Article  CAS  PubMed  Google Scholar 

  • Haworth RS, Cuello F, Herron TJ, Franzen G, Kentish JC, Gautel M, Avkiran M (2004) Protein kinase D is a novel mediator of cardiac troponin I phosphorylation and regulates myofilament function. Circ Res 95:1091–1099

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Arimura T, Itoh-Satoh M, Ueda K, Hohda S, Inagaki N, Takahashi M, Hori H, Yasunami M, Nishi H, Koga Y, Nakamura H, Matsuzaki M, Choi BY, Bae SW, You CW, Han KH, Park JE, Knoll R, Hoshijima M, Chien KR, Kimura A (2004) Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J Am Coll Cardiol 44:2192–2201

    Article  CAS  PubMed  Google Scholar 

  • Himeda CL, Ranish JA, Hauschka SD (2008) Quantitative proteomic identification of MAZ as a transcriptional regulator of muscle-specific genes in skeletal and cardiac myocytes. Mol Cell Biol 28:6521–6535

    Article  CAS  PubMed  Google Scholar 

  • Ji ZX, Du C, Wu GS, Li SY, An GS, Yang YX, Jia R, Jia HT, Ni JH (2009) Synergistic up-regulation of muscle LIM protein expression in C2C12 and NIH3T3 cells by myogenin and MEF2C. Mol Genet Genomics 281:1–10

    Article  CAS  PubMed  Google Scholar 

  • Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, Rocancourt D, Buckingham M, Shinin V, Tajbakhsh S (2004) Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431:466–471

    Article  CAS  PubMed  Google Scholar 

  • Knapp JR, Davie JK, Myer A, Meadows E, Olson EN, Klein WH (2006) Loss of myogenin in postnatal life leads to normal skeletal muscle but reduced body size. Development 133:601–610

    Article  CAS  PubMed  Google Scholar 

  • Kojic S, Medeot E, Guccione E, Krmac H, Zara I, Martinelli V, Valle G, Faulkner G (2004) The Ankrd2 protein, a link between the sarcomere and the nucleus in skeletal muscle. J Mol Biol 339:313–325

    Article  CAS  Google Scholar 

  • Kostrominova TY, Macpherson PC, Carlson BM, Goldman D (2000) Regulation of myogenin protein expression in denervated muscles from young and old rats. Am J Physiol Regul Integr Comp Physiol 279:R179–R188

    CAS  PubMed  Google Scholar 

  • Lettice LA, Heaney SJ, Purdie LA, Li L, de Beer P, Oostra BA, Goode D, Elgar G, Hill RE, de Graaff E (2003) A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet 12:1725–1735

    Article  CAS  PubMed  Google Scholar 

  • Li X, Oghi KA, Zhang J, Krones A, Bush KT, Glass CK, Nigam SK, Aggarwal AK, Maas R, Rose DW, Rosenfeld MG (2003) Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426:247–254

    Article  CAS  PubMed  Google Scholar 

  • Loots GG, Ovcharenko I, Pachter L, Dubchak I, Rubin EM (2002) rVista for comparative sequence-based discovery of functional transcription factor binding sites. Genome Res 12:832–839

    PubMed  Google Scholar 

  • Markert CD, Ning J, Staley JT, Heinzke L, Childers CK, Ferreira JA, Brown M, Stoker A, Okamura C, Childers MK (2008) TCAP knockdown by RNA interference inhibits myoblast differentiation in cultured skeletal muscle cells. Neuromuscul Disord 18:413–422

    Article  PubMed  Google Scholar 

  • Markert CD, Meaney MP, Voelker KA, Grange RW, Dalley HW, Cann JK, Ahmed M, Bishwokarma B, Walker SJ, Yu SX, Brown M, Lawlor MW, Beggs AH, Childers MK (2010) Functional muscle analysis of the Tcap knockout mouse. Hum Mol Genet 19(11):2268–2283

    Article  CAS  PubMed  Google Scholar 

  • Mason P, Bayol S, Loughna PT (1999) The novel sarcomeric protein telethonin exhibits developmental and functional regulation. Biochem Biophys Res Commun 257:699–703

    Article  CAS  PubMed  Google Scholar 

  • Meadows E, Cho JH, Flynn JM, Klein WH (2008) Myogenin regulates a distinct genetic program in adult muscle stem cells. Dev Biol 322:406–414

    Article  CAS  PubMed  Google Scholar 

  • Molkentin JD, Black BL, Martin JF, Olson EN (1995) Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83:1125–1136

    Article  CAS  PubMed  Google Scholar 

  • Moreira ES, Wiltshire TJ, Faulkner G, Nilforoushan A, Vainzof M, Suzuki OT, Valle G, Reeves R, Zatz M, Passos-Bueno MR, Jenne DE (2000) Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat Genet 24:163–166

    Article  CAS  PubMed  Google Scholar 

  • Musaro A, Cusella De Angelis MG, Germani A, Ciccarelli C, Molinaro M, Zani BM (1995) Enhanced expression of myogenic regulatory genes in aging skeletal muscle. Exp Cell Res 221:241–248

    Article  CAS  PubMed  Google Scholar 

  • Nabeshima Y, Hanaoka K, Hayasaka M, Esumi E, Li S, Nonaka I, Nabeshima Y (1993) Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364:532–535

    Article  CAS  PubMed  Google Scholar 

  • Nicholas G, Thomas M, Langley B, Somers W, Patel K, Kemp CF, Sharma M, Kambadur R (2002) Titin-cap associates with, and regulates secretion of, Myostatin. J Cell Physiol 193:120–131

    Article  CAS  PubMed  Google Scholar 

  • Ott MO, Bober E, Lyons G, Arnold H, Buckingham M (1991) Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 111:1097–1107

    CAS  PubMed  Google Scholar 

  • Pollard JW, Walker JM (1997) Basic Cell Culture Protocols Second Edition. Humana Press, Totawa

    Book  Google Scholar 

  • Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R (1993) MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75:1351–1359

    Article  CAS  PubMed  Google Scholar 

  • Spitz F, Demignon J, Porteu A, Kahn A, Concordet JP, Daegelen D, Maire P (1998) Expression of myogenin during embryogenesis is controlled by Six/sine oculis homeoproteins through a conserved MEF3 binding site. Proc Natl Acad Sci USA 95:14220–14225

    Article  CAS  PubMed  Google Scholar 

  • Tian LF, Li HY, Jin BF, Pan X, Man JH, Zhang PJ, Li WH, Liang B, Liu H, Zhao J, Gong WL, Zhou T, Zhang XM (2006) MDM2 interacts with and downregulates a sarcomeric protein, TCAP. Biochem Biophys Res Commun 345:355–361

    Article  CAS  PubMed  Google Scholar 

  • Valle G, Faulkner G, De Antoni A, Pacchioni B, Pallavicini A, Pandolfo D, Tiso N, Toppo S, Trevisan S, Lanfranchi G (1997) Telethonin, a novel sarcomeric protein of heart and skeletal muscle. FEBS Lett 415:163–168

    Article  CAS  PubMed  Google Scholar 

  • Venuti JM, Morris JH, Vivian JL, Olson EN, Klein WH (1995) Myogenin is required for late but not early aspects of myogenesis during mouse development. J Cell Biol 128:563–576

    Article  CAS  PubMed  Google Scholar 

  • Wang DZ, Valdez MR, McAnally J, Richardson J, Olson EN (2001) The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development. Development 128:4623–4633

    CAS  PubMed  Google Scholar 

  • Weintraub H, Dwarki VJ, Verma I, Davis R, Hollenberg S, Snider L, Lassar A, Tapscott SJ (1991) Muscle-specific transcriptional activation by MyoD. Genes Dev 5:1377–1386

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama S, Ito Y, Ueno-Kudoh H, Shimizu H, Uchibe K, Albini S, Mitsuoka K, Miyaki S, Kiso M, Nagai A, Hikata T, Osada T, Fukuda N, Yamashita S, Harada D, Mezzano V, Kasai M, Puri PL, Hayashizaki Y, Okado H, Hashimoto M, Asahara H (2009) A systems approach reveals that the myogenesis genome network is regulated by the transcriptional repressor RP58. Dev Cell 17:836–848

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Stavnezer E (2009) Ski regulates muscle terminal differentiation by transcriptional activation of Myog in a complex with Six1 and Eya3. J Biol Chem 284:2867–2879

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Central Research Committee, Southern Illinois University School of Medicine. The work was also supported by grant #159609 from the American Cancer Society, Illinois Division, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith K. Davie.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Londhe, P., Zhang, M. et al. Transcriptional analysis of the titin cap gene. Mol Genet Genomics 285, 261–272 (2011). https://doi.org/10.1007/s00438-011-0603-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-011-0603-6

Keywords

Navigation