Skip to main content
Log in

Alternative promoters in the pst operon of Escherichia coli

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The pst operon of Escherichia coli is composed of five genes pstS, pstC, pstA, pstB and phoU, that encode a high-affinity phosphate transport system and a negative regulator of the PHO regulon. Transcription of pst is induced under phosphate shortage and is initiated at the promoter located upstream of the first gene of the operon, pstS. Here, we show by four different technical approaches the existence of additional internal promoters upstream of pstC, pstB and phoU. These promoters are not induced by Pi-limitation and do not possess PHO-box sequences. Plasmids carrying the pst internal genes partially complement chromosomal mutations in their corresponding genes, indicating that they are translated into functional proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguena M, Spira B (2003) RT-PCR of long prokaryotic operon transcripts without DNase treatment. J Microbiol Methods 55:419–423

    Article  CAS  PubMed  Google Scholar 

  • Aguena M, Spira B (2008) Transcriptional processing of the pst operon of Escherichia coli. Curr Microbiol 58:264–267

    Article  PubMed  Google Scholar 

  • Aguena M, Yagil E, Spira B (2002) Transcriptional analysis of the pst operon of Escherichia coli. Mol Genet Genomics 268:518–524

    Article  CAS  PubMed  Google Scholar 

  • Aguena M, Ferreira GM, Spira B (2009) Stability of the pstS transcript of Escherichia coli. Arch Microbiol 191:105–112

    Article  CAS  PubMed  Google Scholar 

  • Amemura M, Makino K, Shinagawa H, Kobayashi A, Nakata A (1985) Nucleotide sequence of the genes involved in phosphate transport and regulation of the phosphate regulon in Escherichia coli. J Mol Biol 184:241–250

    Article  CAS  PubMed  Google Scholar 

  • Baek JH, Lee SY (2006) Novel gene members in the Pho regulon of Escherichia coli. FEMS Microbiol Lett 264:104–109

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brosius J (1984) Plasmid vectors for the selection of promoters. Gene 27:151–160

    Article  CAS  PubMed  Google Scholar 

  • Carmany DO, Hollingsworth K, McCleary WR (2003) Genetic and biochemical studies of phosphatase activity of PhoR. J Bacteriol 185:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Chan FY, Torriani A (1996) PstB protein of the phosphate-specific transport system of Escherichia coli is an ATPase. J Bacteriol 178:3974–3977

    CAS  PubMed  Google Scholar 

  • Chen PS, Toribara TY, Warner H (1956) Microdetermination of phosphorus. Anal Chem 28:1756–1758

    Article  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Cox GB, Rosenberg H, Downie JA, Silver S (1981) Genetic analysis of mutants affected in the Pst inorganic phosphate transport system. J Bacteriol 148:1–9

    CAS  PubMed  Google Scholar 

  • Horowitz H, Platt T (1982) Identification of trp-p2, an internal promoter in the tryptophan operon of Escherichia coli. J Mol Biol 156:257–267

    Article  CAS  PubMed  Google Scholar 

  • Horowitz H, Platt T (1983) Initiation in vivo at the internal trp p2 promoter of Escherichia coli. J Biol Chem 258:7890–7893

    CAS  PubMed  Google Scholar 

  • Hurst L (2009) Evolutionary genomics and the reach of selection. J Biol 8:12

    Article  PubMed  Google Scholar 

  • Kato J, Yamada K, Muramatsu A, Hardoyo K, Ohtake H (1993) Genetic improvement of Escherichia coli for enhanced biological removal of phosphate from wastewater. Appl Environ Microbiol 59:3744–3749

    CAS  PubMed  Google Scholar 

  • LeBlanc H, Lang AS, Beatty JT (1999) Transcript cleavage, attenuation, and an internal promoter in the Rhodobacter capsulatus puc operon. J Bacteriol 181:4955–4960

    CAS  PubMed  Google Scholar 

  • Levinthal C, Fetherol K, Signer E (1962) Reactivation and hybridization of reduced alkaline phosphatase. Proc Natl Acad Sci USA 48:1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Li H, O’Sullivan DJ (2006) Identification of a nisI promoter within the nisABCTIP operon that may enable establishment of nisin immunity prior to induction of the operon via signal transduction. J Bacteriol 188:8496–8503

    Article  CAS  PubMed  Google Scholar 

  • Makino K, Amemura M, Kim SK, Nakata A, Shinagawa H (1993) Role of the sigma 70 subunit of RNA polymerase in transcriptional activation by activator protein PhoB in Escherichia coli. Genes Dev 7:149–160

    Article  CAS  PubMed  Google Scholar 

  • Miller JH (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Muda M, Rao NN, Torriani A (1992) Role of PhoU in phosphate transport and alkaline phosphatase regulation. J Bacteriol 174:8057–8064

    CAS  PubMed  Google Scholar 

  • Oyamada T, Yokoyama K, Morinaga M, Suzuki M, Makino K (2007) Expression of Escherichia coli DcuS-R two-component regulatory system is regulated by the secondary internal promoter which is activated by CRP-cAMP. J Microbiol 45:234–240

    CAS  PubMed  Google Scholar 

  • Rice CD, Pollard JE, Lewis ZT, McCleary WR (2009) Employment of a promoter-swapping technique shows that PhoU modulates the activity of the PstSCAB2 ABC transporter in Escherichia coli. Appl Environ Microbiol 75:573–582

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg H, Gerdes RG, Chegwidden K (1977) Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 131:505–511

    CAS  PubMed  Google Scholar 

  • Schurdell MS, Woodbury GM, McCleary WR (2007) Genetic evidence suggests that the intergenic region between pstA and pstB plays a role in the regulation of rpoS translation during phosphate limitation. J Bacteriol 189:1150–1153

    Article  CAS  PubMed  Google Scholar 

  • Shaw WV (1975) Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Meth Enzymol 43:737–755

    Google Scholar 

  • Spira B, Ferenci T (2008) Alkaline phosphatase as a reporter of sigma(S) levels and rpoS polymorphisms in different E coli strains. Arch Microbiol 189:43–47

    Article  CAS  PubMed  Google Scholar 

  • Spira B, Yagil E (1998) The relation between ppGpp and the PHO regulon in Escherichia coli. Mol Gen Genet 257(4):469–477

    Article  CAS  PubMed  Google Scholar 

  • Steed PM, Wanner BL (1993) Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCAB-phoU operon: evidence of a new role for the PhoU protein in the phosphate regulon. J Bacteriol 175:6797–6809

    CAS  PubMed  Google Scholar 

  • Taschner NP, Yagil E, Spira B (2006) The effect of IHF on sigmaS selectivity of the phoA and pst promoters of Escherichia coli. Arch Microbiol 185:234–237

    Article  CAS  PubMed  Google Scholar 

  • Typas A, Becker G, Hengge R (2007) The molecular basis of selective promoter activation by the sigmaS subunit of RNA polymerase. Mol Microbiol 63:1296–1306

    Article  CAS  PubMed  Google Scholar 

  • Wanner BL (1996) Phosphorus assimilation and control of the phosphate regulon. In: Neidhardt FC, Curtiss R (eds) Escherichia coli and Salmonella: cellular and molecular biology. American Society for Microbiology, Washington, pp 1357–1381

    Google Scholar 

  • Webb DC, Rosenberg H, Cox GB (1992) Mutational analysis of the Escherichia coli phosphate-specific transport system, a member of the traffic ATPase (or ABC) family of membrane transporters A role for proline residues in transmembrane helices. J Biol Chem 267:24661–24668

    CAS  PubMed  Google Scholar 

  • Wek RC, Hatfield GW (1986) Examination of the internal promoter, PE, in the ilvGMEDA operon of E. coli K-12. Nucleic Acids Res 14:2763–2777

    Article  CAS  PubMed  Google Scholar 

  • Willsky GR, Malamy MH (1980) Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J Bacteriol 144:356–365

    CAS  PubMed  Google Scholar 

  • Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M (1991) Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 266:5980–5990

    Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). Meire Aguena was a recipient of FAPESP Ph.D. scholarship 02/04070-9. Juliana Velasco was a recipient of a CNPq undergraduate scholarship. We also thank FAPESP and CNPq for supported travel allowances for Ezra Yagil travel allowances to Brazil. Luiz Gustavo de Almeida performed the determination of Pi concentration in LB and medium A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beny Spira.

Additional information

Communicated by D. Andersson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 87.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spira, B., Aguena, M., de Castro Oliveira, J.V. et al. Alternative promoters in the pst operon of Escherichia coli . Mol Genet Genomics 284, 489–498 (2010). https://doi.org/10.1007/s00438-010-0584-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0584-x

Keywords

Navigation