Skip to main content
Log in

RNase T2 genes from rice and the evolution of secretory ribonucleases in plants

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The plant RNase T2 family is divided into two different subfamilies. S-RNases are involved in rejection of self-pollen during the establishment of self-incompatibility in three plant families. S-like RNases, on the other hand, are not involved in self-incompatibility, and although gene expression studies point to a role in plant defense and phosphate recycling, their biological roles are less well understood. Although S-RNases have been subjects of many phylogenetic studies, few have included an extensive analysis of S-like RNases, and genome-wide analyses to determine the number of S-like RNases in fully sequenced plant genomes are missing. We characterized the eight RNase T2 genes present in the Oryza sativa genome; and we also identified the full complement of RNase T2 genes present in other fully sequenced plant genomes. Phylogenetics and gene expression analyses identified two classes among the S-like RNase subfamily. Class I genes show tissue specificity and stress regulation. Inactivation of RNase activity has occurred repeatedly throughout evolution. On the other hand, Class II seems to have conserved more ancestral characteristics; and, unlike other S-like RNases, genes in this class are conserved in all plant species analyzed and most are constitutively expressed. Our results suggest that gene duplication resulted in high diversification of Class I genes. Many of these genes are differentially expressed in response to stress, and we propose that protein characteristics, such as the increase in basic residues can have a defense role independent of RNase activity. On the other hand, constitutive expression and phylogenetic conservation suggest that Class II S-like RNases may have a housekeeping role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acquati F, Possati L et al (2005) Tumor and metastasis suppression by the human RNASET2 gene. Int J Oncol 26(5):1159–1168

    CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    CAS  PubMed  Google Scholar 

  • Banks JA (2009) Selaginella and 400 million years of separation. Ann Rev Plant Biol 60(1):223–238. doi:10.1146/annurev.arplant.59.032607.092851

    Article  CAS  Google Scholar 

  • Bariola P, Green P (1997) Plant ribonucleases. In: D’Alessio G, Riordan J (eds) Ribonucleases: structures and functions. Academic Press, New York, pp 163–190

    Google Scholar 

  • Bariola PA, Howard CJ et al (1994) The Arabidopsis ribonuclease gene Rns1 is tightly controlled in response to phosphate limitation. Plant J 6(5):673–685

    Article  CAS  PubMed  Google Scholar 

  • Bariola PA, MacIntosh GC et al (1999) Regulation of S-like ribonuclease levels in arabidopsis: antisense inhibition of RNS1 or RNS2 elevates anthocyanin accumulation. Plant Physiol 119(1):331–342

    Article  CAS  PubMed  Google Scholar 

  • Bodenhausen N, Reymond P (2007) Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Mol Plant Microbe Interact 20(11):1406–1420. doi:10.1094/Mpmi-20-11-1406

    Article  CAS  PubMed  Google Scholar 

  • Boix E, Nogues MV (2007) Mammalian antimicrobial proteins and peptides: overview on the RNase A superfamily members involved in innate host defence. Mol Biosyst 3(5):317–335. doi:10.1039/B617527a

    Article  CAS  PubMed  Google Scholar 

  • Campomenosi P, Salis S et al (2006) Characterization of RNASET2, the first human member of the Rh/T2/S family of glycoproteins. Arch Biochem Biophys 449(1–2):17–26. doi:10.1016/j.abb.2006.02.022

    Article  CAS  PubMed  Google Scholar 

  • Carreras E, Boix E et al (2003) Both aromatic and cationic residues contribute to the membrane-lytic and bactericidal activity of eosinophil cationic protein. Biochemistry 42(22):6636–6644. doi:10.1021/bi0273011

    Article  CAS  PubMed  Google Scholar 

  • Carter C, Pan S et al (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16(12):3285–3303. doi:10.1105/tpc.104.027078

    Article  CAS  PubMed  Google Scholar 

  • Chang SH, Ying H et al (2003) Expression of a wheat S-like RNase (WRN1) cDNA during natural- and dark-induced senescence. Acta Bot Sin 45(9):1071–1075

    CAS  Google Scholar 

  • Cheng LJ, Wang F et al (2007) Mutation in nicotinamide aminotransferase stimulated the Fe(II) acquisition system and led to iron accumulation in rice. Plant Physiol 145(4):1647–1657. doi:10.1104/pp.107.107912

    Article  CAS  PubMed  Google Scholar 

  • Cho S, Zhang JZ (2007) Zebrafish ribonucleases are bactericidal: Implications for the origin of the vertebrate RNase a superfamily. Mol Biol Evol 24(5):1259–1268. doi:10.1093/molbev/msm047

    Article  CAS  PubMed  Google Scholar 

  • Clarke AE, Newbigin E (1993) Molecular aspects of self-incompatibility in flowering plants. Ann Rev Genet 27(1):257

    Article  CAS  PubMed  Google Scholar 

  • Condon C, Putzer H (2002) The phylogenetic distribution of bacterial ribonucleases. Nucleic Acids Res 30(24):5339–5346

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Garcia F, Hancock CN et al (2003) S-RNase complexes and pollen rejection. J Exp Bot 54(380):123–130. doi:10.1093/jxb/erg045

    Article  CAS  PubMed  Google Scholar 

  • Derelle E, Ferraz C et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103(31):11647–11652. doi:10.1073/pnas.0604795103

    Article  CAS  PubMed  Google Scholar 

  • Deshpande RA, Shankar V (2002) Ribonucleases from T2 family. Crit Rev Microbiol 28(2):79–122. doi:10.1080/1040-840291046704

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S et al (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2(4):953–971. doi:10.1038/nprot.2007.131

    Article  CAS  PubMed  Google Scholar 

  • Galiana E, Bonnet P et al (1997) RNase activity prevents the growth of a fungal pathogen in tobacco leaves and increases upon induction of systemic acquired resistance with elicitin. Plant Physiol 115(4):1557–1567

    Article  CAS  PubMed  Google Scholar 

  • Gan JR, Yu L et al (2004) The three-dimensional structure and X-ray sequence reveal that trichomaglin is a novel S-like ribonuclease. Structure 12(6):1015–1025. doi:10.1016/j.str.2004.03.023

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM et al (eds) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Chapter  Google Scholar 

  • Gausing K (2000) A barley gene (rsh1) encoding a ribonuclease S-like homologue specifically expressed in young light-grown leaves. Planta 210(4):574–579

    Article  CAS  PubMed  Google Scholar 

  • Green PJ (1994) The ribonucleases of higher plants. Annu Rev Plant Phys 45:421–445

    Article  CAS  Google Scholar 

  • Gross N, Wasternack C et al (2004) Wound-induced RNaseLE expression is jasmonate and systemin independent and occurs only locally in tomato (Lycopersicon esculentum cv. Lukullus). Phytochemistry 65(10):1343–1350. doi:10.1016/j.phytochem.2004.04.036

  • Hillwig MS, Lebrasseur ND et al (2008) Impact of transcriptional, ABA-dependent, and ABA-independent pathways on wounding regulation of RNS1 expression. Mol Genet Genomics 280(3):249–261. doi:10.1007/s00438-008-0360-3

    Article  CAS  PubMed  Google Scholar 

  • Hillwig MS, Rizhsky L et al (2009) Zebrafish RNase T2 genes and the evolution of secretory ribonucleases in animals. BMC Evol Biol 9(1):170. doi:10.1186/1471-2148-9-170

  • Hirose N, Makita N et al (2007) Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. Plant Cell Physiol 48(3):523–539. doi:10.1093/pcp/pcm022

    Article  CAS  PubMed  Google Scholar 

  • Hiscock SJ, Kues U et al (1996) Molecular mechanisms of self-incompatibility in flowering plants and fungi—different means to the same end. Trends Cell Biol 6(11):421–428. doi:S0962-8924(96)10037-4[pii]

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Park KJ et al (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587. doi:10.1093/Nar/Gkm259

    Article  PubMed  Google Scholar 

  • Hua ZH, Fields A et al (2008) Biochemical models for S-RNase based self-incompatibility. Mol Plant 1(4):575–585

    Article  CAS  PubMed  Google Scholar 

  • Huang YC, Lin YM et al (2007) The flexible and clustered lysine residues of human ribonuclease 7 are critical for membrane permeability and antimicrobial activity. J Biol Chem 282(7):4626–4633. doi:10.1074/jbc.M607321200

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755

    Article  CAS  PubMed  Google Scholar 

  • Hugot K, Ponchet M et al (2002) A tobacco S-like RNase inhibits hyphal elongation of plant pathogens. Mol Plant Microbe Interact 15(3):243–250

    Article  CAS  PubMed  Google Scholar 

  • Igic B, Kohn JR (2001) Evolutionary relationships among self-incompatibility RNases. Proc Natl Acad Sci USA 98(23):13167–13171

    Article  CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436(7052):793–800. doi:http://www.nature.com/nature/journal/v436/n7052/suppinfo/nature03895_S1.html

    Google Scholar 

  • Irie M (1999) Structure-function relationships of acid ribonucleases: lysosomal, vacuolar, and periplasmic enzymes. Pharmacol Ther 81(2):77–89 S0163-7258(98)00035-7[pii]

    Article  CAS  PubMed  Google Scholar 

  • Iwama M, Ogawa Y et al (2001) Amino acid sequence and characterization of a rice bran ribonuclease. Biol Pharm Bull 24(7):760–766

    Article  CAS  PubMed  Google Scholar 

  • Kariu T, Sano K et al (1998) Isolation and characterization of a wound-inducible ribonuclease from Nicotiana glutinosa leaves. Biosci Biotech Biochem 62(6):1144–1151

    Article  CAS  Google Scholar 

  • Kock M, Theierl K et al (1998) Extracellular administration of phosphate-sequestering metabolites induces ribonucleases in cultured tomato cells. Planta 204(3):404–407

    Article  Google Scholar 

  • Kurata N, Kariu T et al (2002) Molecular cloning of cDNAs encoding ribonuclease-related proteins in Nicotiana glutinosa leaves, as induced in response to wounding or to TMV-infection. Biosci Biotech Biochem 66(2):391–397

    Article  CAS  Google Scholar 

  • Lawton-Rauh A (2003) Evolutionary dynamics of duplicated genes in plants. Mol Phylogenet Evol 29(3):396–409. doi:10.1016/j.ympev.2003.07.004

    Article  CAS  PubMed  Google Scholar 

  • LeBrasseur ND, MacIntosh GC et al (2002) Local and systemic wound-induction of RNase and nuclease activities in Arabidopsis: RNS1 as a marker for a JA-independent systemic signaling pathway. Plant J 29(4):393–403

    Article  CAS  PubMed  Google Scholar 

  • Lers A, Khalchitski A et al (1998) Senescence-induced RNases in tomato. Plant Mol Biol 36(3):439–449

    Article  CAS  PubMed  Google Scholar 

  • Lers A, Sonego L et al (2006) Suppression of LX ribonuclease in tomato results in a delay of leaf senescence and abscission. Plant Physiol 142(2):710–721. doi:10.1104/pp.106.080135

    Article  CAS  PubMed  Google Scholar 

  • Liang L, Lai Z et al (2002) AhSL28, a senescence and phosphate starvation-induced S-like RNase gene in Antirrhinum. Biochim Biophys Acta 1579(1):64–71. doi:S0167478102005079[pii]

    CAS  PubMed  Google Scholar 

  • MacIntosh GC, Bariola PA et al (2001) Characterization of Rny1, the Saccharomyces cerevisiae member of the T-2 RNase family of RNases: unexpected functions for ancient enzymes? Proc Natl Acad Sci USA 98(3):1018–1023

    Article  CAS  PubMed  Google Scholar 

  • McClure BA, Haring V et al (1989) Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature 342(6252):955–957. doi:10.1038/342955a0

    Article  CAS  PubMed  Google Scholar 

  • Merchant SS, Prochnik SE et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250. doi:10.1126/science.1143609

    Article  CAS  PubMed  Google Scholar 

  • Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24(1):34–35

    Article  CAS  PubMed  Google Scholar 

  • Nasrallah JB (2005) Recognition and rejection of self in plant self-incompatibility: comparisons to animal histocompatibility. Trends Immunol 26(8):412–418

    Article  CAS  PubMed  Google Scholar 

  • Nobuta K, Venu RC et al (2007) An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol 25(4):473–477. doi:10.1038/Nbt1291

    Article  CAS  PubMed  Google Scholar 

  • O’hUigin C, Satta Y et al (2002) Contribution of homoplasy and of ancestral polymorphism to the evolution of genes in anthropoid primates. Mol Biol Evol 19(9):1501–1513

    PubMed  Google Scholar 

  • Ohgi K, Iwama M et al (1996) Enzymatic activities of several K108 mutants of ribonuclease (RNase) isolated from Rhizopus niveus. Biol Pharm Bull 19(8):1080–1082

    CAS  PubMed  Google Scholar 

  • Ohno H, Ehara Y (2005) Expression of ribonuclease gene in mechanically injured of virus-inoculated Nicotiana tabacum leaves. Tohoku J Agric Res 55(3–4):11

    Google Scholar 

  • Ouyang S, Zhu W et al (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:D883–D887. doi:10.1093/nar/gkl976

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551–556. http://www.nature.com/nature/journal/v457/n7229/suppinfo/nature07723_S1.html

    Google Scholar 

  • Rensing SA, Lang D et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319(5859):64–69. doi:10.1126/science.1150646

    Article  CAS  PubMed  Google Scholar 

  • Rice Annotation Project (2008) The rice annotation project database (RAP-DB): 2008 update. Nucl Acids Res 36(Suppl 1):D1028–D1033. doi:10.1093/nar/gkm978

  • Roalson EH, McCubbin AG (2003) S-RNases and sexual incompatibility: structure, functions, and evolutionary perspectives. Mol Phylogenet Evol 29(3):490–506. doi:10.1016/S1055-7903(03)00195-7

    Article  CAS  PubMed  Google Scholar 

  • Rogers SW, Rogers JC (1999) Cloning and characterization of a gibberellin-induced RNase expressed in barley aleurone cells. Plant Physiol 119(4):1457–1464

    Article  CAS  PubMed  Google Scholar 

  • Rokas A, Carroll SB (2008) Frequent and widespread parallel evolution of protein sequences. Mol Biol Evol 25(9):1943–1953. doi:10.1093/molbev/msn143

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg HF (1995) Recombinant human eosinophil cationic protein—ribonuclease-activity is not essential for cytotoxicity. J Biol Chem 270(14):7876–7881

    CAS  PubMed  Google Scholar 

  • Salekdeh GH, Siopongco J et al (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2(9):1131–1145

    Article  CAS  PubMed  Google Scholar 

  • Salse J, Bolot S et al (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20(1):11–24. doi:10.1105/tpc.107.056309

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Egami F (1957) Studies on ribonucleases in Takadiastase 1. J Biochem Tokyo 44(11):753–767

    CAS  Google Scholar 

  • Shoemaker RC, Schlueter J et al (2006) Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol 9(2):104–109. doi:10.1016/j.pbi.2006.01.007

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff P, Roiz L et al (2006) A recombinant human RNASET2 glycoprotein with antitumorigenic and antiangiogenic characteristics: expression, purification, and characterization. Cancer 107(12):2760–2769. doi:10.1002/Cncr.22327

    Article  CAS  PubMed  Google Scholar 

  • Steinbachs JE, Holsinger KE (2002) S-RNase-mediated gametophytic self-incompatibility is ancestral in eudicots. Mol Biol Evol 19(6):825–829

    CAS  PubMed  Google Scholar 

  • Swarbreck D, Wilks C, et al (2008) The Arabidopsis information resource (TAIR): gene structure and function annotation. Nucl Acids Res 36(Suppl 1): D1009–D1014. doi:10.1093/nar/gkm965

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland

    Google Scholar 

  • Tanaka N, Arai J et al (2000) Crystal structure of a plant ribonuclease, RNase LE. J Mol Biol 298(5):859–873. doi:10.1006/jmbi.2000.3707

    Article  CAS  PubMed  Google Scholar 

  • Taylor CB, Green PJ (1991) Genes with homology to fungal and S-Gene RNases are expressed in Arabidopsis thaliana. Plant Physiol 96(3):980–984. doi:10.1104/pp.96.3.980

    Article  CAS  PubMed  Google Scholar 

  • Taylor CB, Bariola PA et al (1993) Rns2—a senescence-associated Rnase of Arabidopsis that diverged from the S-Rnases before speciation. Proc Natl Acad Sci USA 90(11):5118–5122

    Article  CAS  PubMed  Google Scholar 

  • Thompson DM, Parker R (2009) The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 185(1):43–50. doi:10.1083/jcb.200811119

    Article  CAS  PubMed  Google Scholar 

  • Torrent M, de la Torre BG et al (2009) Bactericidal and membrane disruption activities of the eosinophil cationic protein are largely retained in an N-terminal fragment. Biochem Jl 421(3):425–434. doi:10.1042/bj20082330

    Article  CAS  Google Scholar 

  • Tuskan GA, DiFazio S, et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604. doi:10.1126/science.1128691

  • Van Damme EJM, Hao Q et al (2000) Major protein of resting rhizomes of Calystegia sepium (hedge bindweed) closely resembles plant RNases but has no enzymatic activity. Plant Physiol 122(2):433–445

    Article  PubMed  Google Scholar 

  • Verslues PE, Zhu J-K (2007) New developments in abscisic acid perception and metabolism. Curr Opin Plant Biol 10(5):447–452

    Article  CAS  PubMed  Google Scholar 

  • Vieira J, Fonseca NA et al (2008) An S-RNase-based gametophytic self-incompatibility system evolved only once in eudicots. J Mol Evol 67(2):179–190. doi:10.1007/s00239-008-9137-x

    Article  CAS  PubMed  Google Scholar 

  • Wei JY, Li AM et al (2006) Cloning and characterization of an RNase-related protein gene preferentially expressed in rice stems. Biosci Biotech Biochem 70(4):1041–1045

    Article  CAS  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18(5):691–699

    CAS  PubMed  Google Scholar 

  • Yamane H, Tao R et al (2003) Identification of a non-S RNase, a possible ancestral form of S-RNases, in Prunus. Mol Genet Genomics 269(1):90–100. doi:10.1007/s00438-003-0815-5

    CAS  PubMed  Google Scholar 

  • Ye ZH, Droste DL (1996) Isolation and characterization of cDNAs encoding xylogenesis-associated and wounding-induced ribonucleases in Zinnia elegans. Plant Mol Biol 30(4):697–709

    Article  CAS  PubMed  Google Scholar 

  • Zhang JZ (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18(6):292–298. doi:10.1016/S0169-5347(03)00033-8

    Article  Google Scholar 

  • Zhang JZ, Dyer KD et al (2000) Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection. Proc Natl Acad Sci USA 97(9):4701–4706

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Dyer KD et al (2003) Human RNase 7: a new cationic ribonuclease of the RNase A superfamily. Nucleic Acids Res 31(2):602–607

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Hennig L et al (2005) Gene-expression analysis and network discovery using Genevestigator. Trends Plant Sci 10(9):407–409

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Bing Yang for providing the rice RNA and sharing unpublished microarray results, Dr. Huixia Shou for providing Pi starvation microarray data, and Matthew Studham for mining the soybean microarray data. This work was supported in part by Grants from Iowa State University and the Roy J. Carver Charitable Trust to GCM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo C. MacIntosh.

Additional information

Communicated by P. Westhoff.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacIntosh, G.C., Hillwig, M.S., Meyer, A. et al. RNase T2 genes from rice and the evolution of secretory ribonucleases in plants. Mol Genet Genomics 283, 381–396 (2010). https://doi.org/10.1007/s00438-010-0524-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0524-9

Keywords

Navigation