Skip to main content
Log in

A survey of airway responsiveness in 36 inbred mouse strains facilitates gene mapping studies and identification of quantitative trait loci

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Airway hyper-responsiveness (AHR) is a critical phenotype of human asthma and animal models of asthma. Other studies have measured AHR in nine mouse strains, but only six strains have been used to identify genetic loci underlying AHR. Our goals were to increase the genetic diversity of available strains by surveying 27 additional strains, to apply haplotype association mapping to the 36-strain survey, and to identify new genetic determinants for AHR. We derived AHR from the increase in airway resistance in females subjected to increasing levels of methacholine concentrations. We used haplotype association mapping to identify associations between AHR and haplotypes on chromosomes 3, 5, 8, 12, 13, and 14. And we used bioinformatics techniques to narrow the identified region on chromosome 13, reducing the region to 29 candidate genes, with 11 of considerable interest. Our combined use of haplotype association mapping with bioinformatics tools is the first study of its kind for AHR on these 36 strains of mice. Our analyses have narrowed the possible QTL genes and will facilitate the discovery of novel genes that regulate AHR in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackerman KG, Huang H, Grasemann H, Puma C, Singer JB, Hill AE, Lander E, Nadeau JH, Churchill GA, Drazen JM, Beier DR (2005) Interacting genetic loci cause airway hyperresponsiveness. Physiol Genomics 21:105–111

    Article  CAS  PubMed  Google Scholar 

  • Azuara V, Pereira P (2000) Genetic mapping of two murine loci that influence the development of IL-4-producing Thy-1dull gamma delta thymocytes. J Immunol 16:42–48

    Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  CAS  PubMed  Google Scholar 

  • Cervino AC, Darvasi A, Fallahi M, Mader CC, Tsinoremas NF (2007) An integrated in silico gene mapping strategy in inbred mice. Genetics 175:321–333

    Article  CAS  PubMed  Google Scholar 

  • Chang HY, Mitzner W (2007) Sex differences in mouse models of asthma. Can J Physiol Pharmacol 85:1226–1235

    Article  CAS  PubMed  Google Scholar 

  • Chesler EJ, Rodriguez-Zas SL, Mogil JS (2001) In silico mapping of mouse quantitative trait loci. Science 294:2423

    Article  CAS  PubMed  Google Scholar 

  • Colilla S, Nicolae D, Pluzhnikov A, Blumenthal MN, Beaty TH, Bleecker ER, Lange EM, Rich SS, Meyers DA, Ober C, Cox NJ (2003) Evidence for gene-environment interactions in a linkage study of asthma and smoking exposure. J Allergy Clin Immunol 111:840–846

    Article  PubMed  Google Scholar 

  • De Sanctis GT, Merchant M, Beier DR, Dredge RD, Grobholz JK, Martin TR, Lander ES, Drazen JM (1995) Quantitative locus analysis of airway hyperresponsiveness in A/J and C57BL/6J mice. Nat Genet 11:150–154

    Article  PubMed  Google Scholar 

  • De Sanctis GT, Singer JB, Jiao A, Yandava CN, Lee YH, Haynes TC, Lander ES, Beier DR, Drazen JM (1999) Quantitative trait locus mapping of airway responsiveness to chromosomes 6 and 7 in inbred mice. Am J Physiol 277:L1118–L1123

    PubMed  Google Scholar 

  • Drazen JM, Finn PW, De Sanctis GT (1999) Mouse models of airway responsiveness: physiological basis of observed outcomes and analysis of selected examples using these outcome indicators. Annu Rev Physiol 61:593–625

    Article  CAS  PubMed  Google Scholar 

  • Ewart SL, Mitzner W, DiSilvestre DA, Meyers DA, Levitt RC (1996) Airway hyperresponsiveness to acetylcholine: segregation analysis and evidence for linkage to murine chromosome 6. Am J Respir Cell Mol Biol 14:487–495

    CAS  PubMed  Google Scholar 

  • Ewart SL, Kuperman D, Schadt E, Tankersley C, Grupe A, Shubitowski DM, Peltz G, Wills-Karp M (2000) Quantitative trait loci controlling allergen-induced airway hyperresponsiveness in inbred mice. Am J Respir Cell Mol Biol 23:537–545

    CAS  PubMed  Google Scholar 

  • Grupe A, Germer S, Usuka J, Aud D, Belknap JK, Klein RF, Ahluwalia MK, Higuchi R, Peltz G (2001) In silico mapping of complex disease-related traits in mice. Science 292:1915–1918

    Article  CAS  PubMed  Google Scholar 

  • Hoffjan S, Nicolae D, Ostrovnaya I, Roberg K, Evans M, Mirel DB, Steiner L, Walker K, Shult P, Gangnon RE, Gern JE, Martinez FD, Lemanske RF, Ober C (2005) Gene-environment interaction effects on the development of immune responses in the 1st year of life. Am J Hum Genet 76:696–704

    Article  CAS  PubMed  Google Scholar 

  • Levitt RC, Mitzner W (1989) Autosomal recessive inheritance of airway hyperreactivity to 5-hydroxytryptamine. J Appl Physiol 67:1125–1132

    CAS  PubMed  Google Scholar 

  • McClintick JN, Edenberg HJ (2006) Effects of filtering by Present call on analysis of microarray experiments. BMC Bioinformatics 7:49

    Article  PubMed  Google Scholar 

  • McClurg P, Pletcher MT, Wiltshire T, Su AI (2006) Comparative analysis of haplotype association mapping algorithms. BMC Bioinformatics 7:61

    Article  PubMed  Google Scholar 

  • McIntire JJ, Umetsu SE, Akbari O, Potter M, Kuchroo VK, Barsh GS, Freeman GJ, Umetsu DT, DeKruyff RH (2001) Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat Immunol 2:1109–1116

    Article  CAS  PubMed  Google Scholar 

  • Mitzner W, Tankersley C (1998) Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am J Respir Crit Care Med 158:340–341

    CAS  PubMed  Google Scholar 

  • Moorman JE, Rudd RA, Johnson CA, King M, Minor P, Bailey C, Scalia MR, Akinbami LJ (2007) National surveillance for asthma—United States, 1980–2004. MMWR Surveill Summ 56:1–54

    PubMed  Google Scholar 

  • Nicolaides NC, Holroyd KJ, Ewart SL, Eleff SM, Kiser MB, Dragwa CR, Sullivan CD, Grasso L, Zhang LY, Messler CJ, Zhou T, Kleeberger SR, Buetow KH, Levitt RC (1997) Interleukin 9: a candidate gene for asthma. Proc Natl Acad Sci USA 94:13175–13180

    Article  CAS  PubMed  Google Scholar 

  • Palmer LJ, Cookson WO (2000) Genomic approaches to understanding asthma. Genome Res 10:1280–1287

    Article  CAS  PubMed  Google Scholar 

  • Payseur BA, Place M (2007) Prospects for association mapping in classical inbred mouse strains. Genetics 175:1999–2008

    Article  CAS  PubMed  Google Scholar 

  • Peters LL, Robledo RF, Bult CJ, Churchill GA, Paigen BJ, Svenson KL (2007) The mouse as a model for human biology: a resource guide for complex trait analysis. Nat Rev Genet 8:58–69

    Article  CAS  PubMed  Google Scholar 

  • Pletcher MT, McClurg P, Batalov S, Su AI, Barnes SW, Lagler E, Korstanje R, Wang X, Nusskern D, Bogue MA, Mural RJ, Paigen B, Wiltshire T (2004) Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. PLoS Biol 2:e393

    Article  PubMed  Google Scholar 

  • Richards IM (1996) Mouse models of allergic disease; how do they relate to asthma in man? Clin Exp Allergy 26:618–620

    Article  CAS  PubMed  Google Scholar 

  • Sly PD, Turner DJ, Collins RA, Hantos Z (2005) Penh is not a validated technique for measuring airway function in mice. Am J Respir Crit Care Med 172:256

    PubMed  Google Scholar 

  • Stylianou IM, Paigen B, Singh J, Schwartz DA (2007) Comparative genomics of asthma. In: Postma DS (ed) Lung biology in health and disease, S.T.W., Informa Healthcare, New York/London, pp 159–177

  • Svenson KL, Von Smith R, Magnani PA, Suetin HR, Paigen B, Naggert JK, Li R, Churchill GA, Peters LL (2007) Multiple trait measurements in 43 inbred mouse strains capture the phenotypic diversity characteristic of human populations. J Appl Physiol 102:2369–2378

    Article  CAS  PubMed  Google Scholar 

  • Szatkiewicz JP, Beane G, Ding Y, Hutchins L, Pardo-Manuel de Villena F, Churchill GA (2007) An imputed genotype resource for the laboratory mouse. Mamm Genome 19:199–208

    Article  Google Scholar 

  • Verdugo RA, Medrano JF (2006) Comparison of gene coverage of mouse oligonucleotide microarray platforms. BMC Genomics 7:58

    Article  PubMed  Google Scholar 

  • Westfall PH, Young SS (1993) Resampling-based multiple testing: examples and methods for p-value adjustment. Wiley, New York, p 340

    Google Scholar 

  • Zhang Y, Lefort J, Kearsey V, Lapa e Silva JR, Cookson WO, Vargaftig BB (1999) A genome-wide screen for asthma-associated quantitative trait loci in a mouse model of allergic asthma. Hum Mol Genet 8:601–605

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jesse Hammer for assistance with the graphics, Joanne Currer for her help in preparing the manuscript, and Drs. Luanne Peters and Edward Leiter for their helpful comments on the manuscript. This work was supported by the grants HL 66611 and HL 83069 from the National Institutes of Health, U.S., and by the Cancer Core grant CA 34196 to the Jackson Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annerose Berndt.

Additional information

Communicated by S. Hohmann.

A. S. Leme, A. Berndt contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leme, A.S., Berndt, A., Williams, L.K. et al. A survey of airway responsiveness in 36 inbred mouse strains facilitates gene mapping studies and identification of quantitative trait loci. Mol Genet Genomics 283, 317–326 (2010). https://doi.org/10.1007/s00438-010-0515-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0515-x

Keywords

Navigation