Skip to main content
Log in

Isolation of a Latimeria menadoensis heat shock protein 70 (Lmhsp70) that has all the features of an inducible gene and encodes a functional molecular chaperone

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Molecular chaperones facilitate the correct folding of other proteins, and heat shock proteins form one of the major classes of molecular chaperones. Heat shock protein 70 (Hsp70) has been extensively studied, and shown to be critically important for cellular protein homeostasis in almost all prokaryotic and eukaryotic systems studied to date. Since there have been very limited studies conducted on coelacanth chaperones, the main objective of this study was to genetically and biochemically characterize a coelacanth Hsp70. We have successfully isolated an Indonesian coelacanth (L. menadoensis) hsp70 gene, Lmhsp70, and found that it contained an intronless coding region and a potential upstream regulatory region. Lmhsp70 encoded a typical Hsp70 based on conserved structural and functional features, and the predicted upstream regulatory region was found to contain six potential promoter elements, and three potential heat shock elements (HSEs). The intronless nature of the coding region and the presence of HSEs suggested that Lmhsp70 was stress-inducible. Phylogenetic analyses provided further evidence that Lmhsp70 was probably inducible, and that it branched as a clade intermediate between bony fish and tetrapods. Recombinant LmHsp70 was successfully overproduced, purified and found to be functional using ATPase activity assays. Taken together, these data provide evidence for the first time that the coelacanth encodes a functional molecular chaperone system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADP:

Adenosine 5′-diphosphate

ATP:

Adenosine 5′-triphosphate

BAC:

Bacterial artificial chromosome

HSE:

Heat shock element

Hsp70:

Heat shock protein 70

IPTG:

Isopropyl-1-thio-β-d-galactopyranoside

kDa:

Kilodalton

LcHsp70:

Latimeria chalumnae Hsp70

LmHsp70:

Latimeria menadoensis Hsp70

PCR:

Polymerase chain reaction

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  • Arai A, Naruse K, Mitani H, Shima A (1995) Cloning and characterization of cDNA for 70-kDa heat-shock protein (hsp70) from two fish species of genus Oryzias. Jpn J Genet 70:423–433

    Article  PubMed  CAS  Google Scholar 

  • Baca AM, Hol WGJ (2000) Overcoming codon bias: a method for high-level overexpression of Plasmodium and other AT-rich parasite genes in Escherichia coli. Int J Parasitol 30:113–118

    Article  PubMed  CAS  Google Scholar 

  • Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salamal SR, Rubin EM, Kent WJ, Haussler D (2006) A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 44:87–90

    Article  Google Scholar 

  • Bork P, Sander C, Valencia A (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and Hsp70 heat shock proteins. Proc Natl Acad Sci USA 89:7290–7294

    Article  PubMed  CAS  Google Scholar 

  • Chae H-D, Yun J, Shin YD (2005) Transcription repression of a CCAAT-binding transcription factor CBF/HSP70 by p53. Exp Mol Med 37:488–491

    PubMed  CAS  Google Scholar 

  • Chou C, Forouhar F, Yeh Y, Shr H, Wang C, Hsiao C (2003) Crystal structure of the C-terminal 10-kDa subdomain of Hsc70. J Biol Chem 278:30311–30316

    Article  PubMed  CAS  Google Scholar 

  • Danke J, Miyake T, Powers T, Schein J, Shin H, Bosdt I, Erdmann M, Caldwell R, Amemiya CT (2004) Genome resource for the Indonesian coelacanth, Latimeria menadoensis. J Exp Zool 301A:228–234

    Article  CAS  Google Scholar 

  • DeLano WL, Bromberg S (2003) PyMOL reference manual. DeLano Scientific LLC, San Carlos

    Google Scholar 

  • Fjell CD, Bosdet I, Schein JE, Jones SJ, Marra MA (2003) Internet Contig Explorer (iCE)—a tool for visualizing clone fingerprint maps. Genome Res 13:1244–1249

    Article  PubMed  CAS  Google Scholar 

  • Flaherty KM, Wilbanks SM, DeLuca-Flaherty C, McKay DB (1994) Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity. Structure of the active site with ADP or ATP bound to wild type and mutant ATPase fragment. J Biol Chem 269:12899–12907

    PubMed  CAS  Google Scholar 

  • Gässler CS, Buchberger A, Laufen T, Mayer MP, Schröder H, Valencia A, Bukau B (1998) Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone. Proc Natl Acad Sci USA 95:15229–15234

    Article  PubMed  Google Scholar 

  • Graser R, Malner-Dragojevic D, Vincek V (1996) Cloning and characterization of a 70 kD heat shock protein cognate (hsc70) gene from the zebrafish (Danio rerio). Genetica 98:273–276

    Article  PubMed  CAS  Google Scholar 

  • Gunther E, Walter L (1994) Genetic aspects of the hsp70 multigene family in vertebrates. Experimentia 50:987–1001

    Article  CAS  Google Scholar 

  • Gwee P-C, Amemiya CT, Brenner S, Venkatesh B (2008) Sequence and organization of the coelacanth neurohypophysical hormone genes: evolutionary history of the vertebrate neurohypophysical hormone gene locus. BMC Evol Biol 8:93–104

    Article  PubMed  Google Scholar 

  • Halloran MC, Sato-Maeda M, Warren JT Jr, Su F, Lele Z, Krone PH, Kuwada JY, Shoji W (2000) Laser-induced gene expression in specific cells of transgenic zebrafish. Development 127:1953–1960

    PubMed  CAS  Google Scholar 

  • Hapgood J, Riedemann J, Scherer SD (2001) Regulation of gene expression by GC-rich DNA cis-elements. Cell Biol Int 25:17–31

    Article  PubMed  CAS  Google Scholar 

  • Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV, Ignatieva EV, Ananko EA, Podkolodnaya OA, Kolpakov FA, Podkolodny NL, Kolchanov NA (1998) Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res 26:362–367

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Prasad K, Lafer EM, Sousa R (2005) Structural basis of interdomain communication in the Hsc70 chaperone. Mol Cell 20:513–524

    Article  PubMed  CAS  Google Scholar 

  • Korathy RK, Jones D, Candido PM (1984) 70-Kilodalton heat shock polypeptide from the rainbow trout: characterization of the cDNA sequences. Mol Cell Biol 4:1785–1791

    Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Lele Z, Engel S, Krone P (1997) hsp47 and hsp70 gene expression is differentially regulated in a stress- and tissue-specific manner in zebrafish embryos. Dev Genet 21:123–133

    Article  PubMed  CAS  Google Scholar 

  • Lim EH, Brenner S (1999) Short-range linkage relationships, genomic organization and sequence comparisons of a cluster of five HSP70 genes in Fugu rubripes. Cell Mol Life Sci 55:668–678

    Article  PubMed  CAS  Google Scholar 

  • Matambo TS, Odunuga OO, Boshoff A, Blatch GL (2004) Over-production, purification and characterization of the Plasmodium falciparum heat shock protein 70. Protein Expr Purif 33:214–222

    Article  PubMed  CAS  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanisms. Cell Mol Life Sci 62:670–684

    Article  PubMed  CAS  Google Scholar 

  • Modisakeng KW, Dorrington RA, Blatch GL (2004) Isolation of genes encoding heat shock protein 70 (hsp70 s) from the coelacanth, Latimeria chalumnae. S Afr J Sci 100:683–686

    CAS  Google Scholar 

  • Modisakeng KW, Amemiya CT, Dorrington RA, Blatch GL (2006) Molecular biology studies on the coelacanth, a review. S Afr J Sci 102:479–485

    Google Scholar 

  • Molina A, Biemar F, Müller F, Iyengar A, Prunet P, Maclean N, Martial JA, Muller M (2000) Cloning and expression analysis of an inducible HSP70 gene from tilapia fish. FEBS Lett 474:5–10

    Article  PubMed  CAS  Google Scholar 

  • Molina A, Di Martino E, Martial JA, Muller M (2001) Heat shock stimulation of a tilapia heat shock protein 70 promoter is mediated by a distal element. Biochem J 356:353–359

    Article  PubMed  CAS  Google Scholar 

  • Molina A, Carpeaux R, Martial JA, Muller M (2002) A transformed fish cell line expressing a green fluorescent protein-luciferase fusion gene responding to cellular stress. Toxicol In Vitro 16:201–207

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 27:3788–3796

    Article  Google Scholar 

  • Morshauser RC, Hu W, Wang H, Pang Y, Flynn GC, Zuiderweg ERP (1999) High resolution solution structure of the 18 kDa substrate-binding domain of the mammalian chaperone protein Hsc70. J Mol Biol 289:1387–1403

    Article  PubMed  CAS  Google Scholar 

  • Noonan JP, Grimwood J, Danke J, Schmutz J, Dickson M, Amemiya CT, Myers RM (2004) Coelacanth genome sequence reveals the evolutionary history of vertebrate genes. Genome Res 14:2397–2405

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Lee JJ, Yoon S, Lee J, Choe SY, Choe Y, Choe J, Park E, Kim CG (2001) Genomic cloning of the Hsc71 gene in the hermaphroditic teleost Rivulus marmoratus and analysis of its expression in skeletal muscles: identification of a novel muscle-preferred regulatory element. Nucleic Acids Res 29:3041–3050

    Article  PubMed  CAS  Google Scholar 

  • Peitsch MC (1996) ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans 24:274–279

    PubMed  CAS  Google Scholar 

  • Reese MG (2001) Application of a time-delay neural network to promoter annotation in Drosophila melanogaster genome. Comput Chem 26:51–56

    Article  PubMed  CAS  Google Scholar 

  • Santacruz H, Vriz S, Angelier N (1997) Molecular characterization of a heat shock cognate cDNA of zebrafish, hsc70, and developmental expression of corresponding transcripts. Dev Genet 21:223–233

    Article  PubMed  CAS  Google Scholar 

  • Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (2000) Structure of the TPR domain-peptide complexes: critical elements in the Hsp70-Hsp90 multichaperone machine. Cell 101:199–210

    Article  PubMed  CAS  Google Scholar 

  • Schein JE, Kucaba TA, Sekhon M, Smailus D, Waterston RH, Marra MA (2004) High-throughput BAC fingerprinting. In: Zhao S, Stodolsky M (eds) Bacterial artificial chromosomes, vol 1. Library Construction, Physical Mapping, and Sequencing Humana Press Inc, Totowa, pp 143–156

    Chapter  Google Scholar 

  • Suh WC, Burkholder WF, Lu CZ, Zhao X, Gottesman ME, Gross CA (1998) Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ. Proc Natl Acad Sci USA 95:15223–15228

    Article  PubMed  CAS  Google Scholar 

  • Uffenbeck SR, Krebs JE (2006) The role of chromatin structure in regulating stress-induced transcription in Saccharomyces cerevisiae. Biochem Cell Biol 84:477–489

    Article  PubMed  CAS  Google Scholar 

  • Vogel JL, Parsell DA, Lindquist S (1995) Heat-shock proteins Hsp104 and Hsp70 reactivate mRNA splicing after heat shock. Curr Biol 5:306–317

    Article  PubMed  CAS  Google Scholar 

  • Yamashita M, Hirayoshi K, Nagata K (2004) Characterization of multiple members of the HSP70 family in platyfish culture cells: molecular evolution of stress protein HSP70 in vertebrates. Gene 336:207–218

    Article  PubMed  CAS  Google Scholar 

  • Yost HJ, Lindquist S (1986) RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell 45:185–193

    Article  PubMed  CAS  Google Scholar 

  • Zafarulla M, Wisnieski J, Shieman S, Shworak N, Misra S, Gedamu L (1992) Molecular cloning and characterization of a constitutively expressed heat shock cognate hsc71 gene from rainbow trout. Eur J Biochem 204:893–900

    Article  Google Scholar 

  • Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman ME, Hendrickson WA (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272:1606–1615

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the South African Department of Science and Technology [administered through South African Institute of Aquatic Biodiversity (SAIAB)]. We are grateful to the German Student Exchange Services (DAAD) and the National Research Foundation (NRF) for study scholarships to KWM. MJ was funded by a study scholarship from the Andrew Mellon Foundation, and E-RP was awarded a Claude Leon Foundation postdoctoral fellowship. Research support for JR is from the National Institutes of Health (R01-CA-108982-02). The authors gratefully acknowledge Mr J. Danke for technical assistance with the L. menadoensis BAC library screening and Dr Jacquie Schein for assistance with the BAC fingerprinting analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory L. Blatch.

Additional information

Communicated by M. Hammerschmidt.

K. W. Modisakeng and M. Jiwaji contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Modisakeng, K.W., Jiwaji, M., Pesce, ER. et al. Isolation of a Latimeria menadoensis heat shock protein 70 (Lmhsp70) that has all the features of an inducible gene and encodes a functional molecular chaperone. Mol Genet Genomics 282, 185–196 (2009). https://doi.org/10.1007/s00438-009-0456-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-009-0456-4

Keywords

Navigation