Skip to main content
Log in

Transcriptome analysis of the zebrafish mind bomb mutant

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Mind bomb (Mib) facilitates Notch signaling pathway by promoting the endocytosis of Notch ligand. The zebrafish mib ta52b mutant has a defect in its ubiquitin ligase activity which is necessary to inhibit the neurogenesis, resulting in a neuronal hyperplasia. Several genes regulated in the mib ta52b mutant have been well established, however, there were relatively few reports about the transcriptome profile. To identify the genes differentially expressed in the mib ta52b mutant, genome-wide analysis was performed using serial analysis of gene expression. Three hundred and thirty-five transcripts were identified whose expressions were significantly altered in the mib ta52b mutant as compared with the wild-type. Interestingly, it was suggested that the mib ta52b mutation may affect not only neurogenesis but also mesoderm development. These results provide new insights into Notch signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Artavanis-Tsakonas S, Simpson P (1991) Choosing a cell fate: a view from the Notch locus. Trends Genet 7:403–408

    PubMed  CAS  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  PubMed  CAS  Google Scholar 

  • Brou C, Logeat F, Gupta N, Bessia C, Lebail O, Doedens JR, Cumano A, Roux P, Black RA, Israël A (2000) A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell 5:207–216

    Article  PubMed  CAS  Google Scholar 

  • Campos-Ortega JA (1988) Cellular interactions during early neurogenesis of Drosophila melanogaster. Trends Neurosci 11:400–405

    Article  PubMed  CAS  Google Scholar 

  • Charroux B, Pellizzoni L, Perkinson RA, Yong J, Shevchenko A, Mann M, Dreyfuss G (2000) Gemin4. A novel component of the SMN complex that is found in both gems and nucleoli. J Cell Biol 148:1177–1186

    Article  PubMed  CAS  Google Scholar 

  • De Strooper B (2003) Aph-1, Pen-2, and nicastrin with presenilin generate an active gamma-secretase complex. Neuron 38:9–12

    Article  PubMed  Google Scholar 

  • Fischer U, Liu Q, Dreyfuss G (1997) The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Fortini ME (2002) Gamma-secretase-mediated proteolysis in cell-surface-receptor signalling. Nat Rev Mol Cell Biol 3:673–684

    Article  PubMed  CAS  Google Scholar 

  • Geling A, Plessy C, Rastegar S, Strähle U, Bally-Cuif L (2004) Her5 acts as a prepattern factor that blocks neurogenin1 and coe2 expression upstream of Notch to inhibit neurogenesis at the midbrain-hindbrain boundary. Development 131:1993–2006

    Article  PubMed  CAS  Google Scholar 

  • Greenwald I, Rubin GM (1992) Making a difference: the role of cell–cell interactions in establishing separate identities for equivalent cells. Cell 68:271–281

    Article  PubMed  CAS  Google Scholar 

  • Hegde A, Qiu NC, Qiu X, Ho SH, Tay KQ, George J, Ng FS, Govindarajan KR, Gong Z, Mathavan S, Jiang YJ (2008) Genomewide expression analysis in zebrafish mind bomb alleles with pancreas defects of different severity identifies putative notch responsive genes. PLoS ONE 3:e1479

    Article  PubMed  Google Scholar 

  • Huovila AP, Turner AJ, Pelto-Huikko M, Kärkkäinen I, Ortiz RM (2005) Shedding light on ADAM metalloproteinases. Trends Biochem Sci 30:413–422

    Article  PubMed  CAS  Google Scholar 

  • Hyatt BA, Yost HJ (1998) The left–right coordinator: the role of Vg1 in organizing left–right axis formation. Cell 93:37–46

    Article  PubMed  CAS  Google Scholar 

  • Hyatt BA, Lohr JL, Yost HJ (1996) Initiation of vertebrate left–right axis formation by maternal Vg1. Nature 384:62–65

    Article  PubMed  CAS  Google Scholar 

  • Isaka F, Shimizu C, Nakanishi S, Kageyama R (1996) Genetic mapping of four mouse bHLH genes related to Drosophila proneural gene atonal. Genomics 37:400–402

    Article  PubMed  CAS  Google Scholar 

  • Itoh M, Kim CH, Palardy G, Oda T, Jiang YJ, Maust D, Yeo SY, Lorick K, Wright GJ, Ariza-McNaughton L, Weissman AM, Lewis J, Chandrasekharappa SC, Chitnis AB (2003) Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev Cell 4:67–82

    Article  PubMed  CAS  Google Scholar 

  • Jarriault S, Greenwald I (2005) Evidence for functional redundancy between C. elegans ADAM proteins SUP-17/Kuzbanian and ADM-4/TACE. Dev Biol 287:1–10

    Article  PubMed  CAS  Google Scholar 

  • Jiang YJ, Brand M, Heisenberg CP, Beuchle D, Furutani-Seiki M, Kelsh RN, Warga RM, Granato M, Haffter P, Hammerschmidt M, Kane DA, Mullins MC, Odenthal J, van Eeden FJ, Nüsslein-Volhard C (1996) Mutations affecting neurogenesis and brain morphology in the zebrafish, Danio rerio. Development 123:205–216

    PubMed  CAS  Google Scholar 

  • Jiang YJ, Aerne BL, Smithers L, Haddon C, Ish-Horowicz D, Lewis J (2000) Notch signalling and the synchronization of the somite segmentation clock. Nature 408:475–479

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    PubMed  CAS  Google Scholar 

  • Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA, Weinstein BM (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128:3675–3683

    PubMed  CAS  Google Scholar 

  • Lee S, Hwang J, Ulaszek J, Kim YC, Dong H, Kim HS, Seok JW, Suh BK, Yim SJ, Johnson D, Choe NH, Chang KT, Ryoo ZY, Tseng CC, Wickrema A, Wang SM (2007) Stable transcriptional status in the apoptotic erythroid genome. Biochem Biophys Res Commun 359:556–562

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Hannus S, Plottner O, Baars T, Hartmann E, Fakan S, Laggerbauer B, Fischer U (2001) SMNrp is an essential pre-mRNA splicing factor required for the formation of the mature spliceosome. Embo J 20:2304–2314

    Article  PubMed  CAS  Google Scholar 

  • Mueller T, Wullimann MF (2003) Anatomy of neurogenesis in the early zebrafish brain. Brain Res Dev Brain Res 140:137–155

    Article  PubMed  CAS  Google Scholar 

  • Mumm JS, Kopan R (2000) Notch signaling: from the outside in. Dev Biol 228:151–165

    Article  PubMed  CAS  Google Scholar 

  • Nam DK, Lee S, Zhou G, Cao X, Wang C, Clark T, Chen J, Rowley JD, Wang SM (2002) Oligo(dT) primer generates a high frequency of truncated cDNAs through internal poly(A) priming during reverse transcription. Proc Natl Acad Sci USA 99:6152–6156

    Article  PubMed  CAS  Google Scholar 

  • Pellizzoni L, Kataoka N, Charroux B, Dreyfuss G (1998) A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95:615–624

    Article  PubMed  CAS  Google Scholar 

  • Qiu X, Xu H, Haddon C, Lewis J, Jiang YJ (2004) Sequence and embryonic expression of three zebrafish fringe genes: lunatic fringe, radical fringe, and manic fringe. Dev Dyn 231:621–630

    Article  PubMed  CAS  Google Scholar 

  • Ramsdell AF, Yost HJ (1999) Cardiac looping and the vertebrate left-right axis: antagonism of left-sided Vg1 activity by a right-sided ALK2-dependent BMP pathway. Development 126:5195–5205

    PubMed  CAS  Google Scholar 

  • Schier AF, Neuhauss SC, Harvey M, Malicki J, Solnica-Krezel L, Stainier DY, Zwartkruis F, Abdelilah S, Stemple DL, Rangini Z, Yang H, Driever W (1996) Mutations affecting the development of the embryonic zebrafish brain. Development 123:165–178

    PubMed  CAS  Google Scholar 

  • Selkoe D, Kopan R (2003) Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci 26:565–597

    Article  PubMed  CAS  Google Scholar 

  • Shpargel KB, Matera AG (2005) Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins. Proc Natl Acad Sci USA 102:17372–17377

    Article  PubMed  CAS  Google Scholar 

  • Six E, Ndiaye D, Laabi Y, Brou C, Gupta-Rossi N, Israel A, Logeat F (2003) The Notch ligand Delta1 is sequentially cleaved by an ADAM protease and gamma-secretase. Proc Natl Acad Sci USA 100:7638–7643

    Article  PubMed  CAS  Google Scholar 

  • Taghert PH, Doe CQ, Goodman CS (1984) Cell determination and regulation during development of neuroblasts and neurones in grasshopper embryo. Nature 307:163–165

    Article  PubMed  CAS  Google Scholar 

  • Thisse C, Thisse B, Schilling TF, Postlethwait JH (1993) Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119:1203–1215

    PubMed  CAS  Google Scholar 

  • Thisse B, Pflumio S, Fürthauer M, Loppin B, Heyer V, Degrave A, Woehl R, Lux A, Steffan T, Charbonnier XQ, Thisse C (2001) Expression of the zebrafish genome during embryogenesis (NIH R01 RR15402). ZFIN Direct Data Submission (http://zfin.org)

  • van Bergeijk J, Rydel-Konecke K, Grothe C, Claus P (2007) The spinal muscular atrophy gene product regulates neurite outgrowth: importance of the C terminus. FASEB J 21:1492–1502

    Article  PubMed  Google Scholar 

  • van Eeden FJ, Granato M, Schach U, Brand M, Furutani-Seiki M, Haffter P, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Warga RM, Allende ML, Weinberg ES, Nüsslein-Volhard C (1996) Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. Development 123:153–164

    PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Struhl G (2004) Drosophila epsin mediates a select endocytic pathway that DSL ligands must enter to activate Notch. Development 131:5367–5380

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Struhl G (2005) Distinct roles for mind bomb, neuralized and epsin in mediating DSL endocytosis and signaling in Drosophila. Development 132:2883–2894

    Article  PubMed  CAS  Google Scholar 

  • Yeo SY, Kim M, Kim HS, Huh TL, Chitnis AB (2007) Fluorescent protein expression driven by her4 regulatory elements reveals the spatiotemporal pattern of Notch signaling in the nervous system of zebrafish embryos. Dev Biol 301:555–567

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Li Q, Lim CH, Qiu X, Jiang YJ (2007) The characterization of zebrafish antimorphic mib alleles reveals that Mib and Mind bomb-2 (Mib2) function redundantly. Dev Biol 305:14–27

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Research grant from Ministry of Science and Technology (NBM2300812).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanggyu Lee.

Additional information

Communicated by T. Becker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2008_395_MOESM1_ESM.doc

MOESM1 Confirm the mesoderm-specific expression of zgc:162968 using whole-mount in situ hybridization. Cross-section of the trunk somite shows that zgc:162968 is specifically expressed in somatic mesoderm (arrows). The sectioned level is indicated by black line in left panel. (DOC 1534 kb)

MOESM2 (XLS 3803 kb)

MOESM3 (XLS 28 kb)

MOESM4 (XLS 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, J., Kim, HS., Seok, JW. et al. Transcriptome analysis of the zebrafish mind bomb mutant. Mol Genet Genomics 281, 77–85 (2009). https://doi.org/10.1007/s00438-008-0395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0395-5

Keywords

Navigation