Skip to main content
Log in

Control of RpoS in global gene expression of Escherichia coli in minimal media

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

RpoS, an alternative sigma factor, is critical for stress response in Escherichia coli. The RpoS regulon expression has been well characterized in rich media that support fast growth and high growth yields. In contrast, though RpoS levels are high in minimal media, how RpoS functions under such conditions has not been clearly resolved. In this study, we compared the global transcriptional profiles of wild type and an rpoS mutant of E. coli grown in glucose minimal media using microarray analyses. The expression of over 200 genes was altered by loss of RpoS in exponential and stationary phases, with only 48 genes common to both conditions. The nature of the RpoS-controlled regulon in minimal media was substantially different from that expressed in rich media. Specifically, the expression of many genes encoding regulatory factors (e.g., hfq, csrA, and rpoE) and genes in metabolic pathways (e.g., lysA, lysC, and hisD) were regulated by RpoS in minimal media. In early exponential phase, protein levels of RpoS in minimal media were much higher than that in Luria-Bertani media, which may at least partly account for the observed difference in the expression of RpoS-controlled genes. Expression of genes required for flagellar function and chemotaxis was elevated in the rpoS mutant. Western blot analyses show that the flagella sigma factor FliA was expressed much higher in rpoS mutants than in WT in all phase of growth. Consistent with this, the motility of rpoS mutants was enhanced relative to WT. In conclusion, RpoS and its controlled regulators form a complex regulatory network that mediates the expression of a large regulon in minimal media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ades SE, Connolly LE, Alba BM, Gross CA (1999) The Escherichia coli sigma(E)-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-sigma factor. Genes Dev 13:2449–2461

    Article  PubMed  CAS  Google Scholar 

  • Baldi P, Hatfield GW (2002) DNA microarrays and gene expression: from experiments to data analysis and modeling. Cambridge University Press, Cambridge

    Google Scholar 

  • Becker G, Klauck E, Hengge-Aronis R (1999) Regulation of RpoS proteolysis in Escherichia coli: the response regulator RssB is a recognition factor that interacts with the turnover element in RpoS. Proc Natl Acad Sci USA 96:6439–6444

    Article  PubMed  CAS  Google Scholar 

  • Bergholz TM, Wick LM, Qi W, Riordan JT, Ouellette LM, Whittam TS (2007) Global transcriptional response of Escherichia coli O157:H7 to growth transitions in glucose minimal medium. BMC Microbiol 7:97

    Article  PubMed  Google Scholar 

  • Bougdour A, Gottesman S (2007) ppGpp regulation of RpoS degradation via anti-adaptor protein IraP. Proc Natl Acad Sci USA 104:12896–12901

    Article  PubMed  CAS  Google Scholar 

  • Costanzo A, Ades SE (2006) Growth phase-dependent regulation of the extracytoplasmic stress factor, sigmaE, by guanosine 3′, 5′-bispyrophosphate (ppGpp). J Bacteriol 188:4627–4634

    Article  PubMed  CAS  Google Scholar 

  • De Las PA, Connolly L, Gross CA (1997) SigmaE is an essential sigma factor in Escherichia coli. J Bacteriol 179:6862–6864

    Google Scholar 

  • Dong T, Kirchhof MG, Schellhorn HE (2008) RpoS regulation of gene expression during exponential growth of Escherichia coli K12. Mol Genet Genomics 279:267–277

    Article  PubMed  CAS  Google Scholar 

  • Foster PL (2007) Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 42:373–397

    Article  PubMed  CAS  Google Scholar 

  • Groat RG, Schultz JE, Zychlinsky E, Bockman A, Matin A (1986) Starvation proteins in Escherichia coli: kinetics of synthesis and role in starvation survival. J Bacteriol 168:486–493

    PubMed  CAS  Google Scholar 

  • Haugen BJ, Pellett S, Redford P, Hamilton HL, Roesch PL, Welch RA (2007) In vivo gene expression analysis identifies genes required for enhanced colonization of the mouse urinary tract by uropathogenic Escherichia coli strain CFT073 dsdA. Infect Immun 75:278–289

    Article  PubMed  CAS  Google Scholar 

  • Hengge-Aronis R (1993) Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in Escherichia coli. Cell 72:165–168

    Article  PubMed  CAS  Google Scholar 

  • Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–95

    Article  PubMed  CAS  Google Scholar 

  • Ishihama A (2000) Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol 54:499–518

    Article  PubMed  CAS  Google Scholar 

  • Jishage M, Ishihama A (1995) Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of sigma 70 and sigma 38. J Bacteriol 177:6832–6835

    PubMed  CAS  Google Scholar 

  • Kabir MS, Yamashita D, Koyama S, Oshima T, Kurokawa K, Maeda M, Tsunedomi R, Murata M, Wada C, Mori H, Yamada M (2005) Cell lysis directed by sigmaE in early stationary phase and effect of induction of the rpoE gene on global gene expression in Escherichia coli. Microbiology 151:2721–2735

    Article  PubMed  CAS  Google Scholar 

  • Kanehara K, Ito K, Akiyama Y (2002) YaeL (EcfE) activates the sigma(E) pathway of stress response through a site-2 cleavage of anti-sigma(E), RseA. Genes Dev 16:2147–2155

    Article  PubMed  CAS  Google Scholar 

  • Karp PD, Paley S, Romero P (2002) The Pathway Tools software. Bioinformatics 18(Suppl 1):S225–S232

    PubMed  Google Scholar 

  • Karp PD, Keseler IM, Shearer A, Latendresse M, Krummenacker M, Paley SM, Paulsen I, Collado-Vides J, Gama-Castro S, Peralta-Gil M, Santos-Zavaleta A, Penaloza-Spinola MI, Bonavides-Martinez C, Ingraham J (2007) Multidimensional annotation of the Escherichia coli K-12 genome. Nucleic Acids Res 35:7577–7590

    Article  PubMed  CAS  Google Scholar 

  • King T, Ferenci T (2005) Divergent roles of RpoS in Escherichia coli under aerobic and anaerobic conditions. FEMS Microbiol Lett 244:323–327

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi A, Hirakawa H, Hirata T, Nishino K, Yamaguchi A (2006) Growth phase-dependent expression of drug exporters in Escherichia coli and its contribution to drug tolerance. J Bacteriol 188:5693–5703

    Article  PubMed  CAS  Google Scholar 

  • Lacour S, Landini P (2004) SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identification of their promoter sequences. J Bacteriol 186:7186–7195

    Article  PubMed  CAS  Google Scholar 

  • Lange R, Hengge-Aronis R (1991) Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5:49–59

    Article  PubMed  CAS  Google Scholar 

  • Lange R, Hengge-Aronis R (1994) The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev 8:1600–1612

    Article  PubMed  CAS  Google Scholar 

  • Lelong C, Aguiluz K, Luche S, Kuhn L, Garin J, Rabilloud T, Geiselmann J (2007) The Crl-RpoS regulon of Escherichia coli. Mol Cell Proteomics 6:648–659

    Article  PubMed  CAS  Google Scholar 

  • Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98:31–36

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Durfee T, Cabrera JE, Zhao K, Jin DJ, Blattner FR (2005) Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli. J Biol Chem 280:15921–15927

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, Richard H, Tucker DL, Conway T, Foster JW (2002) Collaborative regulation of Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX and GadW (YhiW). J Bacteriol 184:7001–7012

    Article  PubMed  CAS  Google Scholar 

  • Mandel MJ, Silhavy TJ (2005) Starvation for different nutrients in Escherichia coli results in differential modulation of RpoS levels and stability. J Bacteriol 187:434–442

    Article  PubMed  CAS  Google Scholar 

  • Marshall OJ (2004) PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20:2471–2472

    Article  PubMed  CAS  Google Scholar 

  • Masuda N, Church GM (2003) Regulatory network of acid resistance genes in Escherichia coli. Mol Microbiol 48:699–712

    Article  PubMed  CAS  Google Scholar 

  • Matin A (1991) The molecular basis of carbon-starvation-induced general resistance in Escherichia coli. Mol Microbiol 5:3–10

    Article  PubMed  CAS  Google Scholar 

  • McCann MP, Kidwell JP, Matin A (1991) The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. J Bacteriol 173:4188–4194

    PubMed  CAS  Google Scholar 

  • Mecsas J, Rouviere PE, Erickson JW, Donohue TJ, Gross CA (1993) The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Genes Dev 7:2618–2628

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Missiakas D, Mayer MP, Lemaire M, Georgopoulos C, Raina S (1997) Modulation of the Escherichia coli sigmaE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol Microbiol 24:355–371

    Article  PubMed  CAS  Google Scholar 

  • Muffler A, Fischer D, Hengge-Aronis R (1996) The RNA-binding protein HF-I, known as a host factor for phage Qbeta RNA replication, is essential for rpoS translation in Escherichia coli. Genes Dev 10:1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Nitta T, Nagamitsu H, Murata M, Izu H, Yamada M (2000) Function of the sigma(E) regulon in dead-cell lysis in stationary-phase Escherichia coli. J Bacteriol 182:5231–5237

    Article  PubMed  CAS  Google Scholar 

  • Nystrom T (2004) Stationary-phase physiology. Annu Rev Microbiol 58:161–181

    Article  PubMed  Google Scholar 

  • Partridge JD, Scott C, Tang Y, Poole RK, Green J (2006) Escherichia coli transcriptome dynamics during the transition from anaerobic to aerobic conditions. J Biol Chem 281:27806–27815

    Article  PubMed  CAS  Google Scholar 

  • Patten CL, Kirchhof MG, Schertzberg MR, Morton RA, Schellhorn HE (2004) Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol Genet Genomics 272:580–591

    Article  PubMed  CAS  Google Scholar 

  • Peterson CN, Mandel MJ, Silhavy TJ (2005) Escherichia coli starvation diets: essential nutrients weigh in distinctly. J Bacteriol 187:7549–7553

    Article  PubMed  CAS  Google Scholar 

  • Phadtare S, Inouye M (2001) Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli. J Bacteriol 183:1205–1214

    Article  PubMed  CAS  Google Scholar 

  • Pratt LA, Silhavy TJ (1996) The response regulator SprE controls the stability of RpoS. Proc Natl Acad Sci USA 93:2488–2492

    Article  PubMed  CAS  Google Scholar 

  • Rahman M, Hasan MR, Oba T, Shimizu K (2006) Effect of rpoS gene knockout on the metabolism of Escherichia coli during exponential growth phase and early stationary phase based on gene expressions, enzyme activities and intracellular metabolite concentrations. Biotechnol Bioeng 94:585–595

    Article  PubMed  CAS  Google Scholar 

  • Romeo T (1998) Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29:1321–1330

    Article  PubMed  CAS  Google Scholar 

  • Rouviere PE, De Las PA, Mecsas J, Lu CZ, Rudd KE, Gross CA (1995) rpoE, the gene encoding the second heat-shock sigma factor, sigma E, in Escherichia coli. EMBO J 14:1032–1042

    PubMed  CAS  Google Scholar 

  • Ruiz N, Silhavy TJ (2003) Constitutive activation of the Escherichia coli Pho regulon upregulates rpoS translation in an Hfq-dependent fashion. J Bacteriol 185:5984–5992

    Article  PubMed  CAS  Google Scholar 

  • Salmon K, Hung SP, Mekjian K, Baldi P, Hatfield GW, Gunsalus RP (2003) Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR. J Biol Chem 278:29837–29855

    Article  PubMed  CAS  Google Scholar 

  • Sezonov G, Joseleau-Petit D, D’Ari R (2007) Escherichia coli physiology in Luria-Bertani broth. J Bacteriol 189:8746–8749

    Article  PubMed  CAS  Google Scholar 

  • Simon R, Lam A, Li M-C, Ngan M, Menenzes S, Zhao Y (2007) Analysis of gene expression data using BRB-Array Tools. Cancer Inform 2:11–17

    Google Scholar 

  • Studemann A, Noirclerc-Savoye M, Klauck E, Becker G, Schneider D, Hengge R (2003) Sequential recognition of two distinct sites in sigma(S) by the proteolytic targeting factor RssB and ClpX. EMBO J 22:4111–4120

    Article  PubMed  Google Scholar 

  • Tao H, Bausch C, Richmond C, Blattner FR, Conway T (1999) Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J Bacteriol 181:6425–6440

    PubMed  CAS  Google Scholar 

  • Traxler MF, Chang DE, Conway T (2006) Guanosine 3′, 5′-bispyrophosphate coordinates global gene expression during glucose-lactose diauxie in Escherichia coli. Proc Natl Acad Sci USA 103:2374–2379

    Article  PubMed  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  PubMed  CAS  Google Scholar 

  • Typas A, Barembruch C, Possling A, Hengge R (2007) Stationary phase re organisation of the Escherichia coli transcription machinery by Crl protein, a fine-tuner of sigma s activity and levels. EMBO J 26:1569–1578

    Article  PubMed  CAS  Google Scholar 

  • Vijayakumar SR, Kirchhof MG, Patten CL, Schellhorn HE (2004) RpoS-regulated genes of Escherichia coli identified by random lacZ fusion mutagenesis. J Bacteriol 186:8499–8507

    Article  PubMed  CAS  Google Scholar 

  • Wang QP, Kaguni JM (1989) A novel sigma factor is involved in expression of the rpoH gene of Escherichia coli. J Bacteriol 171:4248–4253

    PubMed  CAS  Google Scholar 

  • Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R (2005) Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603

    Article  PubMed  CAS  Google Scholar 

  • Weichart D, Querfurth N, Dreger M, Hengge-Aronis R (2003) Global role for ClpP-containing proteases in stationary-phase adaptation of Escherichia coli. J Bacteriol 185:115–125

    Article  PubMed  CAS  Google Scholar 

  • Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Irizarry RA (2004) Preprocessing of oligonucleotide array data. Nat Biotechnol 22:656–658

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Gottesman S (1998) Regulation of proteolysis of the stationary-phase sigma factor RpoS. J Bacteriol 180:1154–1158

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research operating grant from the Canadian Institutes of Health Research (CIHR) to H.E. Schellhorn. We thank C. Joyce and S. Chiang for reviewing the manuscript and R. Yu for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herb E. Schellhorn.

Additional information

Communicated by D. Andersson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2008_389_MOESM1_ESM.xls

Suppmental Table. Transcriptome expression of E. coli wild type and rpoS mutants in exponential phase (OD600 = 0.3) and stationary phase (OD600 = 1.5) in glucose (0.2%) M63 minimal media. StdE: Standard Error (XLS 3508 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, T., Schellhorn, H.E. Control of RpoS in global gene expression of Escherichia coli in minimal media. Mol Genet Genomics 281, 19–33 (2009). https://doi.org/10.1007/s00438-008-0389-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0389-3

Keywords

Navigation