Skip to main content
Log in

The Lawc protein is required for proper transcription by RNA polymerase II in Drosophila

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Genetic analysis of the Drosophila leg–arista–wing complex (lawc) gene suggests a role for the Lawc protein in chromatin-related processes based on its classification as a trxG gene but the molecular mechanisms of its function remain elusive. We have found that Lawc is a small, cysteine-rich protein that is present in most of the interbands of polytene chromosomes. In agreement with this observation, Lawc co-localizes with RNA polymerase IIo (Pol IIo) and it is recruited to transcribed loci after elongation by Pol IIo has begun. Lawc interacts with the nuclear proteasome regulator dREGγ in a yeast two-hybrid assay and both proteins co-localize on polytene chromosomes. In addition, a mutation in lawc interacts genetically with a mutation in a component of the proteasome. lawc mutants show decreased expression of some genes, while the levels of Pol IIoSer2 increase. We conclude that Lawc is required for proper transcription by RNA polymerase II in a process that involves the nuclear proteasome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ashburner M (1972) Patterns of puffing activity in the salivary gland chromosomes of Drosophila. VI. Induction by ecdysone in salivary glands of D. melanogaster cultured in vitro. Chromosoma 38:255–281

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M (1990) Puffs, genes, and hormones revisited. Cell 61:1–3

    Article  PubMed  CAS  Google Scholar 

  • Bai J, Uehara Y, Montell DJ (2000) Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell 103:1047–1058

    Article  PubMed  CAS  Google Scholar 

  • Capelson M, Corces VG (2005) The ubiquitin ligase dTopors directs the nuclear organization of a chromatin insulator. Mol Cell 20:105–116

    Article  PubMed  CAS  Google Scholar 

  • Covi JA, Belote JM, Mykles DL (1999) Subunit compositions and catalytic properties of proteasomes from developmental temperature-sensitive mutants of Drosophila melanogaster. Arch Biochem Biophys 368:85–97

    Article  PubMed  CAS  Google Scholar 

  • Crosby MA, Goodman JL, Strelets VB, Zhang P, Gelbart WM (2007) FlyBase: genomes by the dozen. Nucleic Acids Res 35:D486–D491

    Article  PubMed  CAS  Google Scholar 

  • Dennis AP, Lonard DM, Nawaz Z, O’Malley BW (2005) Inhibition of the 26S proteasome blocks progesterone receptor-dependent transcription through failed recruitment of RNA polymerase II. J Steroid Biochem Molec Biol 94:337–346

    Article  PubMed  CAS  Google Scholar 

  • Dubiel W, Pratt G, Ferrell K, Rechsteiner M (1992) Purification of an 11 S regulator of the multicatalytic protease. J Biol Chem 267:22369–22377

    PubMed  CAS  Google Scholar 

  • Dworniczak B, Seidel R, Pongs O (1983) Puffing activities and binding of ecdysteroid to polytene chromosomes of Drosophila melanogaster. Embo J 2:1323–1330

    PubMed  CAS  Google Scholar 

  • Ferdous A, Gonzalez F, Sun L, Kodadek T, Johnston SA (2001) The 19S regulatory particle of the proteasome is required for efficient transcription elongation by RNA polymerase II. Molec Cell 7:981–991

    Article  PubMed  CAS  Google Scholar 

  • Gillette TG, Gonzalez F, Delahodde A, Johnston SA, Kodadek T (2004) Physical and functional association of RNA polymerase II and the proteasome. Proc Natl Acad Sci USA 101:5904–5909

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez F, Delahodde A, Kodadek T, Johnston SA (2002) Recruitment of a 19S proteasome subcomplex to an activated promoter. Science 296:548–550

    Article  PubMed  CAS  Google Scholar 

  • Ho CK, Shuman S (1999) Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol Cell 3:405–411

    Article  PubMed  CAS  Google Scholar 

  • Huet F, Ruiz C, Richards G (1993) Puffs and PCR: the in vivo dynamics of early gene expression during ecdysone responses in Drosophila. Development 118:613–627

    PubMed  CAS  Google Scholar 

  • Ivaldi MS, Karam CS, Corces VG (2007) Phosphorylation of histone H3 at Ser10 facilitates RNA polymerase II release from promoter-proximal pausing in Drosophila. Genes Dev 21:2818–2831

    Article  PubMed  CAS  Google Scholar 

  • Karim FD, Thummel CS (1992) Temporal coordination of regulatory gene expression by the steroid hormone ecdysone. Embo J 11:4083–4093

    PubMed  CAS  Google Scholar 

  • Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    PubMed  CAS  Google Scholar 

  • King-Jones K, Thummel CS (2005) Nuclear receptors—a perspective from Drosophila. Nat Rev Genet 6:311–323

    Article  PubMed  CAS  Google Scholar 

  • Kinyamu HK, Chen J, Archer TK (2005) Linking the ubiquitin-proteasome pathway to chromatin remodeling/modification by nuclear receptors. J Mol Endocrinol 34:281–297

    Article  PubMed  CAS  Google Scholar 

  • Kopytova DV, Krasnov AN, Kopantceva MR, Nabirochkina EN, Nikolenko JV, Maksimenko O, Kurshakova MM, Lebedeva LA, Yerokhin MM, Simonova OB et al (2006) Two isoforms of Drosophila TRF2 are involved in embryonic development, premeiotic chromatin condensation, and proper differentiation of germ cells of both sexes. Mol Cell Biol 26:7492–7505

    Article  PubMed  CAS  Google Scholar 

  • Li B, Gogol M, Carey M, Pattenden SG, Seidel C, Workman JL (2007) Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription. Genes Dev 21:1422–1430

    Article  PubMed  CAS  Google Scholar 

  • Li X, Lonard DM, Jung SY, Malovannaya A, Feng Q, Qin J, Tsai SY, Tsai MJ, O’Malley BW (2006) The SRC–3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome. Cell 124:381–392

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Flores O, Weinmann R, Reinberg D (1991) The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex. Proc Natl Acad Sci USA 88:10004–10008

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Zawel L, Fisher L, Egly JM, Reinberg D (1992) Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature 358:641–645

    Article  PubMed  CAS  Google Scholar 

  • Marshall NF, Peng J, Xie Z, Price DH (1996) Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J Biol Chem 271:27176–27183

    Article  PubMed  CAS  Google Scholar 

  • Masson P, Andersson O, Petersen UM, Young P (2001) Identification and characterization of a Drosophila nuclear proteasome regulator. A homolog of human 11 S REGgamma (PA28gamma). J Biol Chem 276:1383–1390

    Article  PubMed  CAS  Google Scholar 

  • Pile LA, Wassarman DA (2000) Chromosomal localization links the SIN3-RPD3 complex to the regulation of chromatin condensation, histone acetylation and gene expression. Embo J 19:6131–6140

    Article  PubMed  CAS  Google Scholar 

  • Reid G, Hubner MR, Metivier R, Brand H, Denger S, Manu D, Beaudouin J, Ellenberg J, Gannon F (2003) Cyclic, proteasome-mediated turnover of unliganded and liganded ER[alpha] on responsive promoters is an integral feature of estrogen signaling. Molec Cell 11:695–707

    Article  PubMed  CAS  Google Scholar 

  • Reinberg D, Sims RJ 3rd (2006) de FACTo nucleosome dynamics. J Biol Chem 281:23297–23301

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer L, Roy R, Humbert S, Moncollin V, Vermeulen W, Hoeijmakers JH, Chambon P, Egly JM (1993) DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260:58–63

    Article  PubMed  CAS  Google Scholar 

  • Schroeder SC, Schwer B, Shuman S, Bentley D (2000) Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev 14:2435–2440

    Article  PubMed  CAS  Google Scholar 

  • Schwartz BE, Larochelle S, Suter B, Lis JT (2003) Cdk7 is required for full activation of Drosophila heat shock genes and RNA polymerase II phosphorylation in vivo. Mol Cell Biol 23:6876–6886

    Article  PubMed  CAS  Google Scholar 

  • Talbot WS, Swyryd EA, Hogness DS (1993) Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 73:1323–1337

    Article  PubMed  CAS  Google Scholar 

  • Wilk S, Chen WE, Magnusson RP (2000) Properties of the nuclear proteasome activator PA28gamma (REGgamma). Arch Biochem Biophys 383:265–271

    Article  PubMed  CAS  Google Scholar 

  • Wu CH, Lee C, Fan R, Smith MJ, Yamaguchi Y, Handa H, Gilmour DS (2005) Molecular characterization of Drosophila NELF. Nucleic Acids Res 33:1269–1279

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A, Sugimoto S, Hasegawa J, Handa H (1999) NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97:41–51

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Munson KM, Webb WW, Lis JT (2006) Dynamics of heat shock factor association with native gene loci in living cells. Nature 442:1050–1053

    Article  PubMed  CAS  Google Scholar 

  • Yao TP, Forman BM, Jiang Z, Cherbas L, Chen JD, McKeown M, Cherbas P, Evans RM (1993) Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366:476–479

    Article  PubMed  CAS  Google Scholar 

  • Yao TP, Segraves WA, Oro AE, McKeown M, Evans RM (1992) Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell 71:63–72

    Article  PubMed  CAS  Google Scholar 

  • Zhao YM, Chen X, Sun H, Yuan ZG, Ren GL, Li XX, Lu J, Huang BQ (2006) Effects of histone deacetylase inhibitors on transcriptional regulation of the hsp70 gene in Drosophila. Cell Res 16:566–576

    Article  PubMed  CAS  Google Scholar 

  • Zorin ID, Gerasimova TI, Corces VG (1999) The lawc gene is a new member of the trithorax-group that affects the function of the gypsy insulator of Drosophila. Genetics 152:1045–1055

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Ellen M. Baxter for the establishment of transgenic flies and Dr. Mark Van Doren and members of his lab for providing a welcoming and stimulating environment to carry out some of the work described in the manuscript. We also thank Dr. Patrick Young for α-dREGγ, Dr. Susan M. Parkhurst for a cDNA library and Drs Allan C. Spradling, Mark Van Doren, Kyle W. Cunningham, Maya Capelson, Ellen M. Baxter, and Reed S. Shabman for advice. The EcR antibody developed by C. Thummel and D. Hogness was obtained from the Developmental Studies Hybridoma Bank established under the auspices of the NICHD and maintained by The University of Iowa, Department of Biological Sciences, Iowa City, IA 52242. This work was supported by National Science Foundation Award MCB-0618972.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor G. Corces.

Additional information

Communicated by T. Clandinin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figures (DOC 615 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, T., Corces, V.G. The Lawc protein is required for proper transcription by RNA polymerase II in Drosophila . Mol Genet Genomics 280, 385–396 (2008). https://doi.org/10.1007/s00438-008-0372-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0372-z

Keywords

Navigation