Skip to main content
Log in

Sequence and expression analysis of the thioredoxin protein gene family in rice

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Thioredoxin (Trx) proteins play important biological functions in cells by changing redox via thioldisulfied exchange. This system is especially widespread in plants. Through database search, we identified 30 potential Trx protein-encoding genes (OsTrx) in rice (Oryza sativa L.). An analysis of the complete set of OsTrx proteins is presented here, including chromosomal location, conserved motifs, domain duplication, and phylogenetic relationships. Our findings suggest that the expansion of the Trx gene family in rice, in large part, occurred due to gene duplication. A comprehensive expression profile of Trx genes family was investigated by analyzing the signal data of this family extracted from the whole genome microarray analysis of Minghui 63 and Zhenshan 97, two indica parents, and their hybrid Shanyou 63, using 27 different tissues representing the entire life cycle of rice. Results revealed specific expression of some members at germination transition as well as the 3-leaf stage during the vegetative growth phase of rice. OsTrx genes were also found to be differentially up- or down-regulated in rice seedlings subjected to treatments of phytohormones and light/dark conditions. The expression levels of the OsTrx genes in the different tissues and under different treatments were also checked by RT-PCR analysis. The identification of OsTrx genes showing differential expression in specific tissues among different genotypes or in response to different environmental cues could provide a new avenue for functional analyses in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Trx:

Thioredoxin

SH:

Sulfhydryl

ATP:

Adenosine triphosphate

GA3 :

Gibberellic acid

NAA:

Naphthalene acetic acid

KT:

Kinetin

RT-PCR:

Reverse transcription polymerase chain reaction

Cys:

Cysteine

FBPase:

Fructose 1, 6-bis phosphatase

NADPH:

Nicotinamide adenine dinucleotide phosphate

TIGR:

The Institute for Genomic Research

References

  • Alkhalfioui F, Renard M, William HV, Wong J, Charlene KT, William JH, Buchanan BB, Montrichard F (2007) Thioredoxin-linked proteins are reduced during germination of medicago truncatula seeds. Plant Physiol 144:1559–1579

    Article  PubMed  CAS  Google Scholar 

  • Arner ESJ, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109

    Article  PubMed  CAS  Google Scholar 

  • Bai J et al (2002) Diversity in nucleotide binding siteleucine-rich repeat genes in cereals. Genome Res 12:871–1884

    Article  CAS  Google Scholar 

  • Bailey TL, Elkan C (1995) The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol 3:21–29

    PubMed  CAS  Google Scholar 

  • Balmer Y, William HV, Frances MD, Buchanan BB, William JH (2006a) Proteome of amyloplasts isolated from developing wheat endosperm resents evidence of broad metabolic capability. J Exp Bot 57:1591–1602

    Article  PubMed  CAS  Google Scholar 

  • Balmer Y, William HV, Manieri W, Schurmann P, William JH, Buchanan BB (2006b) A complete ferredoxin thioredoxin system regulates fundamental processes in amyloplasts. Proc Natl Acad Sci USA 103:2988–2993

    Article  PubMed  CAS  Google Scholar 

  • Barajas-Lopez JD, Serrato AJ, Olmedilla A, Chueca A, Sahrawy M (2007) Localization in roots and flowers of pea chloroplastic thioredoxin f and thioredoxin m proteins reveals new roles in nonphotosynthetic organs. Plant Physiol 145:946–960

    Article  CAS  Google Scholar 

  • Buchanan BB (1991) Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system perspective on its discovery, present status, and future development. Arch Biochem Biophys 288:1–9

    Article  PubMed  CAS  Google Scholar 

  • Collin V, Issakidis-Bourguet E, Marchand C, Hirasawa M, Lancelin JM, Knaff DB, Miginiac-Maslow M (2003) The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. J Biol Chem 278:23747–23752

    Article  PubMed  CAS  Google Scholar 

  • Crawford NA, Droux M, Kosower NS, Buchanan BB (1989) Evidence for function of the ferredoxin/thioredoxin system in the reductive activation of target enzymes of isolated intact chloroplasts. Arch Biochem Biophys 271:223–239

    Article  PubMed  CAS  Google Scholar 

  • Dai SD, Johansson K, Miginiac-Maslow M, Schurmann P, Eklund H (2004) Structural basis of redox signaling in photosynthesis: structure and function of ferredoxin: thioredoxin reductase and target enzymes. Photosynth Res 79:233–248

    Article  PubMed  CAS  Google Scholar 

  • De Hoon MJL, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 209:1453–1454

    Article  CAS  Google Scholar 

  • Dutilleul C, Garmier M, Noctor G, Mathieu C, Chetrit P, Foyer CH, de-Paepe R (2003) Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 15:1212–1226

    Article  PubMed  CAS  Google Scholar 

  • Florencio FJ, Yee BC, Johnson TC, Buchanan BB (1988) An NADP/thioredoxin system in leaves: purification and characterization of NADP-thioredoxin reductase and thioredoxin h from spinach. Arch Biochem Biophys 266:496–507

    Article  PubMed  CAS  Google Scholar 

  • Frand AR, Cuozzo JW, Kaiser CA (2000) Pathways for protein disulphide bond formation. Trends Cell Biol 10:203–210

    Article  PubMed  CAS  Google Scholar 

  • Gelhaye E, Rouhier N, Jacquot JP (2003) Evidence for a subgroup of thioredoxin h that requires GSH/Grx for its reduction. FEBS Lett 555:443–448

    Article  PubMed  CAS  Google Scholar 

  • Gelhaye E, Rouhier N, Jacquot JP (2004) The thioredoxin h system of higher plants. Plant Physiol Biochem 42:265–271

    Article  PubMed  CAS  Google Scholar 

  • Gelhaye E, Rouhier N, Navrot N, Jacquot JP (2005) The plant thioredoxin system. Cell Mol Life Sci 62:24–35

    Article  PubMed  CAS  Google Scholar 

  • Gilbert HF (1990) Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol Relat Areas Mol Biol 63:69–172

    Article  PubMed  CAS  Google Scholar 

  • Goff SA et al (2002) A draft sequence of the rice genome (Orayza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mole Bilo 35:205–218

    Article  CAS  Google Scholar 

  • Hisabori T, Motohashi K, Matsuda NH, Nakanishi HU, Romano PGN (2007) Towards a functional dissection of thioredoxin networks in plant cells. Photoche Photobiol 83:145–151

    CAS  Google Scholar 

  • Holmgren A (1981) Regulation of ribonucleotide reductase. Curr Topics Cell Rag 19:47–76

    CAS  Google Scholar 

  • Holmgren A (1985) Thioredoxin. Ann Rev Biochem 54:237–271

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF Psort: protein localization predictor. Nucleic Acids Res 35:585–587

    Article  Google Scholar 

  • Huang L, Sun Q, Qin F, Li C, Zhao Y, Zhou DX (2007) Down-regulation of a silent information regulator2-related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice. Plant Physiol 144:1508–1519

    Article  PubMed  CAS  Google Scholar 

  • Huala E et al (2001) The Arabidopsis Information Reseource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res 29:102–105

    Article  PubMed  CAS  Google Scholar 

  • Jacquot JP, Lopez-Jaramillo J, Miginiac-Maslow M, Lemaire S, Cherfils J, Chueca A, Lopez-Gorge J (1997) Cysteine-153 is required for redox regulation of pea chloroplast fructose-1, 6-bisphosphatase. FEBS Lett 401:143–147

    Article  PubMed  CAS  Google Scholar 

  • Jaramillo JL, Chueca A, Jacquot JP, Hermoso R, Lazaro JJ, Sahrawy M, Gorge JL (1997) High-yield expression of pea thioredoxin m and assessment of its efficiency in chloroplast fructose-1, 6-bisphosphatase activation. Plant Physiol 114:1169–1175

    Article  CAS  Google Scholar 

  • Jain M, Kaur N, Garg R, Thakur JK, Tyagi AK, Khurana JP (2006a) Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice Oryza sativa. Funct Integr Genomics 6:47–59

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Tyagi AK, Khurana JP (2006b) Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa). Genomics 88:360–371

    Article  PubMed  CAS  Google Scholar 

  • Jiao Y, Ma L, Strickland E, Deng XW (2005) Conservation and divergence of light-regulated genome expression patterns during seedling development in rice and Arabidopsis. Plant Cell 17:3239–3256

    Article  PubMed  CAS  Google Scholar 

  • Johnson TC, Cao RQ, Kung JE, Buchanan BB (1987) Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells. Planta 171:321–331

    Article  PubMed  CAS  Google Scholar 

  • Jung BG, Lee KO, Lee SS, Chi YH, Jang HH, Kang SS, Lee K, Lim D, Yoon SC, Yun DJ, Inoue Y, Cho MJ, Lee SY (2002) A Chinese cabbage cDNA with high sequence identity to phospholipids hydroperoxide glutathione peroxidases encodes a novel isoform of thioredoxin-dependent peroxidase. J Biol Chem 277:12572–12578

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Mayfield SP (2002) The active site of the thioredoxin-like domain of chloroplast protein disulfide isomerase, RB60, catalyzes the redox-regulated binding of chloroplast poly (A)-binding protein, RB47, to the 5′ untranslated region of psbA mRNA. Plant Cell Physiol 43:1238–1243

    Article  PubMed  CAS  Google Scholar 

  • Kobrehel K, Wong JH, Balogh A, Kiss F, Yee BC, Buchanan BB (1992) Specific reduction of wheat storage proteins by thioredoxin. Plant Physiol 99:919–924

    PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Laurent TC, Moore EC, Reichard P (1964) Enzymatic synthesis of deoxyribonucleotides IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J Biol Chem 239:3436–3444

    PubMed  CAS  Google Scholar 

  • Lemaire SD, Michelet L, Za-Vagnini M, Massot V, Issakidis-Bourguet E (2007) Thioredoxins in chloroplasts. Curr Genet 51:343–365

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Zhu W, Silva CJ, Gu X, Buell CR (2006) Intron gain and loss in segmentally duplicated genes in rice. Genome Biol 7:41

    Article  CAS  Google Scholar 

  • Lozano RM, Wong JH, Yee BC, Peters A, Kobrehel K, Buchanan BB (1996) New evidence for a role for thioredoxin h in germination and seedling development. Planta 200:100–106

    Article  CAS  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Meyer Y, Vignols F, Reichheld JP (2002) Classification of plant thioredoxins by sequence similarity and intron position. Methods Enzymol 347:394–402

    Article  PubMed  CAS  Google Scholar 

  • Meyer Y, Reichheld JP, Vignols F (2005) Thioredoxins in Arabidopsis and other plants. Photo Res 86:419–433

    Article  CAS  Google Scholar 

  • Miginiac-Maslow M, Lancelin JM (2002) Intrasteric inhibition in redox signalling: light activation of NADP-malate dehydrogenase. Photosynth Res 72:1–12

    Article  PubMed  CAS  Google Scholar 

  • Mills JD, Mitchell P, Schurmann P (1980) Modulation of coupling factor ATPase activity in intact chloroplasts, the role of the thioredoxin system. FEBS Lett 112:173–177

    Article  CAS  Google Scholar 

  • Montrichard F, Renard M, Alkhalfioui F, Frederic DD, Macherel D (2003) Identification and differential expression of two thioredoxin h isoforms in germinating seeds from pea. Plant Physiol 132:1707–1715

    Article  PubMed  CAS  Google Scholar 

  • Raes J, Vandepoele K, Simillion C, Saeys Y, Van de Peer Y (2003) Investigating ancient duplication events in the Arabidopsis genome. J Struct Funct Genomics 3:117–129

    Article  PubMed  CAS  Google Scholar 

  • Raines C (2005) Preface to redox regulation of leaf metabolism. J Exp Bot 56:416

    Article  Google Scholar 

  • Roy SW, Penny D (2006) Patterns of intron loss and gain in plants: intron loss–dominated evolution and genome-wide comparison of O. sativa and A. thaliana. Mol Biol Evol 24:171–181

    Article  PubMed  CAS  Google Scholar 

  • Scheibe R, Anderson LE (1981) Dark modulation of NADP-dependent malate dehydrogenase and glucose-6-phosphate dehydrogenase in the chloroplast. Biochim Biophys Acta 636:58–64

    Article  PubMed  CAS  Google Scholar 

  • Schurmann P (2003) Redox signaling in the chloroplast: the freedoxin/thioredoxin system. Antioxid Redox Signal 5:69–78

    Article  PubMed  CAS  Google Scholar 

  • Schurmann P, Jacquot JP (2000) Plant thioredoxin systems revisited. Plant Physiol Mol Biol 51:371–400

    Article  CAS  Google Scholar 

  • Serrato AJ, Crespo JL, Florencio FJ, Cejudo F (2001) Characterization of two thioredoxins h with predominant localization in the nucleus of aleurone and scutellum cells of germinating wheat seeds. Plant Mol Biol 46:361–371

    Article  PubMed  CAS  Google Scholar 

  • Shen S, Sharma A, Komatsu S (2002) Characterization of proteins responsive of gibberellin in the leaf-sheath of rice (Oryza sativa L.) seedling using proteome analysis. Biol Pharm Bull 26:129–136

    Article  Google Scholar 

  • Simillion C, Vandepoele K, Van-Montagu MC, Zabeau M, Van-de-Peer Y (2002) The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci USA 99:13627–13632

    Article  PubMed  CAS  Google Scholar 

  • Stoughton RB (2005) Applications of DNA microarrays in biology. Ann Rev Biochem 74:53–82

    Article  PubMed  CAS  Google Scholar 

  • Taylor JS, Raes J (2004) Duplication and divergence: the evolution of new genes and old ideas. Ann Rev Genet 9:615–643

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Shi X, Hao B, Ge S, Luo J (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y (2007) Genome-wide analysis of the auxin response factors ARF gene family in rice Oryza sativa. Gene 394:13–24

    Article  PubMed  CAS  Google Scholar 

  • Wigoda N, Ben-Nissan G, Schwartz A, Weiss D (2006) The gibberellin-induced, cysteine-rich protein GIP2 from Petunia hybrida exhibits in planta antioxidant activity. Plant J 48:796–805

    Article  PubMed  CAS  Google Scholar 

  • Wong JH, Kim YB, Ren PH, Cai N, Cho MJ, Hedden P, Lemaux PG, Buchanan BB (2002) Transgenic barley grain overexpressing thioredoxin shows evidence that the starchy endosperm communicates with the embryo and the aleurone. Proc Natl Acad Sci USA 99:16325–16330

    Article  PubMed  CAS  Google Scholar 

  • Wong JH, Balmer Y, Cai N, Tanaka CK, Vensel WH, Hurkman WJ, Buchanan BB (2003) Unraveling thioredoxin-linked metabolic processes of cereal starchy endosperm using proteomics. FEBS Lett 547:151–156

    Article  PubMed  CAS  Google Scholar 

  • Yano H, Kuroda M (2005) Disulfide proteome yields a detailed understanding of redox regulations: A model study of thioredoxin-linked reactions in seed germination. Proteomics 6:294–300

    Article  CAS  Google Scholar 

  • Yano H, Wong JH, Cho MJ, Buchanan BB (2001) Redox changes accompanying the degradation of seed storage proteins in germinating rice. Plant Cell Physiol 42:879–883

    Article  PubMed  CAS  Google Scholar 

  • Yu J et al (2005) The genomes of Oryza sativa: A history of duplications. PLoS Biol 3e:38

    Article  CAS  Google Scholar 

  • Zhang S, Chen C, Li L, Meng L, Singh J, Jiang N, Deng XW, He ZH, Lemaux PG (2005) Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family. Plant Physiol 139:1107–1124

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) Genevestigator, Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by grants from the National Basic Research Program of China (2005CB120905), the National Special Key Project of China on Functional Genomics of Major Plants and Animals, the National Natural Science Foundation of China and the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (NO 707045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingming Lian.

Additional information

Communicated by A. Tyagi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuruzzaman, M., Gupta, M., Zhang, C. et al. Sequence and expression analysis of the thioredoxin protein gene family in rice. Mol Genet Genomics 280, 139–151 (2008). https://doi.org/10.1007/s00438-008-0351-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0351-4

Keywords

Navigation