Skip to main content
Log in

Application of physical and genetic map of Rhizobium leguminosarum bv. trifolii TA1 to comparison of three closely related rhizobial genomes

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

A combined physical and genetic map of Rhizobium leguminosarum biovar trifolii TA1 (RtTA1) genome was constructed and used in comparison of chromosomal organization with the closely related R. leguminosarum bv. viciae 3841 (Rlv) and Rhizobium etli CNF42 (Rhe). This approach allowed evaluation of chromosome and genome plasticity and provided important insights into R. leguminosarum lineage diversity. MssI, SmiI, PacI, and I-CeuI restriction endonucleases were chosen for the analysis, generating fragments with suitable size distributions for RtTA1 genome mapping. The fragments were assembled into a physical map using a combination of complementary methods, including multiple and partial digests of genomic DNA, hybridization with homologous gene probes, and cross-Southern hybridization. About 100 genetic markers were located on the RtTA1 restriction map. Comparison of genetic maps of RtTA1, Rlv, and Rhe revealed extensive chromosomal colinearity despite differences in the physical maps. The comparison provides bases for comprehensive analysis of the evolution of R. leguminosarum genome, indicating that, at least on the chromosomal level, no major rearrangements had occurred after the evolutionary divergence of R. leguminosarum biovars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott JC, Aanensen DM, Rutherford K, Butcher S, Spratt BG (2005) WebACT—an online companion for the Artemis comparison tool. Bioinformatics 21:3665–3666

    Article  PubMed  CAS  Google Scholar 

  • Bentley SD, Parkhill J (2004) Comparative genomic structure of prokaryotes. Annu Rev Genet 38:771–792

    Article  PubMed  CAS  Google Scholar 

  • Brom S, Garcia-de los Santos A, Cervantes L, Palacios R, Romero D (2000) In Rhizobium etli symbiotic plasmid transfer, nodulation competitivity and cellular growth require interaction among different replicons. Plasmid 44:34–43

    Article  PubMed  CAS  Google Scholar 

  • Brom S, Garcia de los Santos A, de Lourdes Girard M, Davila G, Palacios R, Romero D (1991) High-frequency rearrangements in Rhizobium leguminosarum bv. phaseoli plasmids. J Bacteriol 173:1344–1346

    PubMed  CAS  Google Scholar 

  • Brom S, Garcia de los Santos A, Stepkowsky T, Flores M, Davila G, Romero D, Palacios R (1992) Different plasmids of Rhizobium leguminosarum bv. phaseoli are required for optimal symbiotic performance. J Bacteriol 174:5183–5189

    PubMed  CAS  Google Scholar 

  • Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, Dreano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Puhler A, Purnelle B, Ramsperger U, Renard C, Thebault P, Vandenbol M, Weidner S, Galibert F (2001) Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc Natl Acad Sci USA 98:9877–9882

    Article  PubMed  CAS  Google Scholar 

  • Chakravorty AK, Żurkowski W, Shine J, Rolfe BG (1982) Symbiotic nitrogen fixation: molecular cloning of Rhizobium genes involved in exopolysaccharide synthesis and effective nodulation. J Mol Appl Genet 1:585–596

    PubMed  CAS  Google Scholar 

  • Cole ST, Saint Girons I (1994) Bacterial genomics. FEMS Microbiol Rev 14:139–160

    Article  PubMed  CAS  Google Scholar 

  • Daveran-Mingot ML, Campo N, Ritzenthaler P, Le Bourgeois P (1998) A natural large chromosomal inversion in Lactococcus lactis is mediated by homologous recombination between two insertion sequences. J Bacteriol 180:4834–4842

    PubMed  CAS  Google Scholar 

  • Davila G, Gonzalez V, Ramirez-Romero MA, Rodriguez O (2005) Rhizobium etli genome biology. In: Palacios R, Newton WE (eds) Genomes and genomics of nitrogen-fixing organisms. Springer, Dordrecht, pp 133–142

    Chapter  Google Scholar 

  • Dempsey JA, Wallace AB, Cannon JG (1995) The physical map of the chromosome of a serogroup A strain of Neisseria meningitidis shows complex rearrangements relative to the chromosomes of the two mapped strains of the closely related species N. gonorrhoeae. J Bacteriol 177:6390–6400

    PubMed  CAS  Google Scholar 

  • Djordjevic MA, Żurkowski W, Rolfe BG (1982) Plasmids and stability of symbiotic properties of Rhizobium trifolii. J Bacteriol 151:560–568

    PubMed  CAS  Google Scholar 

  • Eisen JA (2000a) Assessing evolutionary relationships among microbes from whole-genome analysis. Curr Opin Microbiol 3:475–480

    Article  PubMed  CAS  Google Scholar 

  • Eisen JA (2000b) Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr Opin Genet Dev 10:606–611

    Article  PubMed  CAS  Google Scholar 

  • Eisen JA, Heidelberg JF, White O, Salzberg SL (2000) Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biol 1:0011.1–0011.9

    Article  Google Scholar 

  • Flores M, Morales L, Avila A, Gonzalez V, Bustos P, Garcia D, Mora Y, Guo X, Collado-Vides J, Pinero D, Davila G, Mora J, Palacios R (2005) Diversification of DNA sequences in the symbiotic genome of Rhizobium etli. J Bacteriol 187:7185–7192

    Article  PubMed  CAS  Google Scholar 

  • Fraser CM, Eisen J, Fleischmann RD, Ketchum KA, Peterson S (2000) Comparative genomics and understanding of microbial biology. Emerg Infect Dis 6:505–512

    Article  PubMed  CAS  Google Scholar 

  • Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    Article  PubMed  CAS  Google Scholar 

  • Gevers D, Vandepoele K, Simillon C, Van de Peer C (2004) Gene duplication and biased functional retention of paralogs in bacterial genomes. Trends Microbiol 12:148–154

    Article  PubMed  CAS  Google Scholar 

  • Giuntini E, Mengoni A, De Filippo C, Cavalieri D, Aubin-Horth N, Landry CR, Becker A, Bazzicalupo M (2005) Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains. BMC Genomics 10:158

    Article  CAS  Google Scholar 

  • Gonzalez V, Bustos P, Ramirez-Romero MA, Medrano-Soto A, Salgado H, Hernandez-Gonzalez I, Hernandez-Celis JC, Quintero V, Moreno-Hagelsieb G, Girard L, Rodriguez O, Flores M, Cevallos MA, Collado-Vides J, Romero D, Davila G (2003) The mosaic structure of the symbiotic plasmid of Rhizobium etli CFN42 and its relation to other symbiotic genome compartments. Genome Biol 4:R36

    Article  PubMed  Google Scholar 

  • Gonzalez V, Santamaria RI, Bustos P, Hernandez-Gonzalez I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramirez MA, Jimenez-Jacinto V, Collado-Vides J, Davila G (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci USA 103:3834–3839

    Article  PubMed  Google Scholar 

  • Guerrero G, Peralta H, Aguilar A, Diaz R, Villalobos MA, Medrano-Soto A, Mora J (2005) Evolutionary, structural and functional relationships revealed by comparative analysis of syntenic genes in Rhizobiales. BMC Evol Biol 5:55

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Sun S, Finan TM, Xu J (2005) Novel DNA sequences from natural strains of the nitrogen-fixing symbiotic bacterium Sinorhizobium meliloti. Appl Environ Microbiol 71:7130–7138

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Flores M, Morales L, Garcia D, Bustos P, Gonzalez V, Palacios R, Davila G (2007) DNA diversification in two Sinorhizobium species. J Bacteriol 189:6474–6476

    Article  PubMed  CAS  Google Scholar 

  • Hooper SD, Berg OG (2003) On the nature of gene innovation: duplication patterns in microbial genomes. Mol Biol Evol 20:945–954

    Article  PubMed  CAS  Google Scholar 

  • Huyen MA, Bork P (1997) Measuring genome evolution. Proc Natl Acad Sci USA 95:5849–5856

    Article  Google Scholar 

  • Jordan IK, Rogozin IB, Wolf YI, Koonin EV (2002) Microevolutionary genomics of bacteria. Theor Popul Biol 61:435–447

    Article  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    Article  PubMed  Google Scholar 

  • Król JE, Mazur A, Marczak M, Skorupska A (2007) Syntenic arrangements of the surface polysaccharide biosynthesis genes in Rhizobium leguminosarum. Genomics 89:237–247

    Article  PubMed  CAS  Google Scholar 

  • Le Bourgeois P, Daveran-Mingot ML, Ritzenthaler P (2000) Genome plasticity among related Lactococcus strains: identification of genetic events associated with macrorestriction polymorphisms. J Bacteriol 182:2481–2491

    Article  PubMed  CAS  Google Scholar 

  • Liu SL, Hessel A, Sanderson KE (1993) Genomic mapping with I-CeuI, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli, and other bacteria. Proc Natl Acad Sci USA 90:6874–6878

    Article  PubMed  CAS  Google Scholar 

  • Marczyński GT, Shapiro L (1992) Cell-cycle control of a cloned chromosomal origin of replication from Caulobacter crescentus. J Mol Biol 226:959–977

    Article  PubMed  Google Scholar 

  • Mavingui P, Flores M, Guo X, Davila G, Perret X, Broughton WJ, Palacios R (2002) Dynamics of genome architecture in Rhizobium sp. strain NGR234. J Bacteriol 184:171–176

    Article  PubMed  CAS  Google Scholar 

  • Mavingui P, Flores M, Romero D, Martinez-Romero E, Palacios R (1997) Generation of Rhizobium strains with improved symbiotic properties by random DNA amplification (RDA). Nat Biotechnol 15:564–569

    Article  PubMed  CAS  Google Scholar 

  • Mercado-Blanco J, Toro N (1996) Plasmids in Rhizobia: the role of nonsymbiotic plasmids. Mol Plant Microbe Interact 9:535–545

    CAS  Google Scholar 

  • Palacios R, Flores M (2005) Genome dynamics in Rhizobial organisms. In: Palacios R, Newton WE (eds) Genomes and genomics of nitrogen-fixing organisms. Springer, Dordrecht, pp 183–200

    Chapter  Google Scholar 

  • Palacios R, Newton WE (2005) Genomes and genomics of nitrogen-fixing organisms. Springer, Dordrecht

    Google Scholar 

  • Rocha EPC (2004) Order and disorder in bacterial genomes. Curr Opin Microbiol 7:519–527

    Article  PubMed  CAS  Google Scholar 

  • Rocha EP, Danchin A (2003) Gene essentiality determines chromosome organization in bacteria. Nucleic Acids Res 31:6570–6577

    Article  PubMed  CAS  Google Scholar 

  • Romling U, Schmidt KD, Tummler B (1997) Large genome rearrangements discovered by the detailed analysis of 21 Pseudomonas aeruginosa clone C isolates found in environment and disease habitats. J Mol Biol 271:386–404

    Article  PubMed  CAS  Google Scholar 

  • Rutherford K (2000) Artemis: sequence visualisation and annotation. Bioinformatics 16:944–945

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Segovia L, Young JP, Martínez-Romero E (1993) Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 43:374–377

    Article  PubMed  CAS  Google Scholar 

  • Tamames J (2001) Evolution of gene order conservation in prokaryotes. Genome Biol 2:research 0020.1–0020.11

  • Tillier ER, Collins RA (2000) Genome rearrangement by replication-directed translocation. Nat Genet 26:195–197

    Article  PubMed  CAS  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of the root-nodule bacteria. Blackwell, Oxford

    Google Scholar 

  • Ward-Rainey N, Rainey FA, Wellington EMH, Stackebrandt E (1996) Physical map of the genome of Planctomyces limnophilus, a representative of the phylogenetically distinct planctomycete lineage. J Bacteriol 178:1908–1913

    PubMed  CAS  Google Scholar 

  • Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson AR, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Jaroslaw Król and Andrzej Mazur contributed equally to this work. This work was supported by Ministry of Education and Science grant no. 2 P04A 034 26.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Mazur.

Additional information

Communicated by D. Ussery.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Król, J.E., Mazur, A., Marczak, M. et al. Application of physical and genetic map of Rhizobium leguminosarum bv. trifolii TA1 to comparison of three closely related rhizobial genomes. Mol Genet Genomics 279, 107–121 (2008). https://doi.org/10.1007/s00438-007-0299-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0299-9

Keywords

Navigation