Skip to main content
Log in

The genistein stimulon of Bradyrhizobium japonicum

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

An initializing step in the rhizobia–legume symbiosis is the secretion of flavonoids by plants that leads to the expression of nodulation genes in rhizobia. Here we report the genome-wide transcriptional response of Bradyrhizobium japonicum to genistein, an isoflavone secreted by soybean. About 100 genes were induced in the wild type. This included all nod box-associated genes, the flagellar cluster and several genes that are likely to be involved in transport processes. To elucidate the role of known regulators, we analysed mutant strains. This revealed that the two-component response regulator NodW is essential for induction of almost all genistein-inducible genes, with the exception of 8 genes. The phenotype of the nodW mutant could be partially suppressed by overexpression of NwsB, which is also a two-component response regulator. These data indicate that genistein has a much broader function than mere induction of nod genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banerji S, Flieger A (2004) Patatin-like proteins: a new family of lipolytic enzymes present in bacteria? Microbiology 150:522–525

    Article  PubMed  CAS  Google Scholar 

  • Banfalvi Z, Nieuwkoop A, Schell M, Besl L, Stacey G (1988) Regulation of nod gene expression in Bradyrhizobium japonicum. Mol Gen Genet 214:420–424

    Article  PubMed  CAS  Google Scholar 

  • Barbour WM, Hattermann DR, Stacey G (1991) Chemotaxis of Bradyrhizobium japonicum to soybean exudates. Appl Environ Microbiol 57:2635–2639

    PubMed  CAS  Google Scholar 

  • Becker A, Fraysse N, Sharypova L (2005) Recent advances in studies on structure and symbiosis-related function of rhizobial K-antigens and lipopolysaccharides. Mol Plant Microbe Interact 18:899–905

    Article  PubMed  CAS  Google Scholar 

  • Cooper JE (2004) Multiple responses of rhizobia to flavonoids during legume root infection. Adv Bot Res 41:1–62

    Article  CAS  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    Article  PubMed  CAS  Google Scholar 

  • D’Haeze W, Holsters M (2002) Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 12:79R–105R

    Article  PubMed  CAS  Google Scholar 

  • Dockendorff TC, Sharma AJ, Stacey G (1994) Identification and characterization of the nolYZ genes of Bradyrhizobium japonicum. Mol Plant Microbe Interact 7:173–180

    PubMed  CAS  Google Scholar 

  • Ellison DW, Miller VL (2006) Regulation of virulence by members of the MarR/SlyA family. Curr Opin Microbiol 9:153–159

    Article  PubMed  CAS  Google Scholar 

  • Fellay R, Hanin M, Montorzi G, Frey J, Freiberg C, Golinowski W, Staehelin C, Broughton WJ, Jabbouri S (1998) nodD 2 of Rhizobium sp. NGR234 is involved in the repression of the nodABC operon. Mol Microbiol 27:1039–1050

    Article  PubMed  CAS  Google Scholar 

  • Garcia M, Dunlap J, Loh J, Stacey G (1996) Phenotypic characterization and regulation of the nolA gene of Bradyrhizobium japonicum. Mol Plant Microbe Interact 9:625–636

    PubMed  CAS  Google Scholar 

  • Geiger O, López-Lara IM (2002) Rhizobial acyl carrier proteins and their roles in the formation of bacterial cell-surface components that are required for the development of nitrogen-fixing root nodules on legume hosts. FEMS Microbiol Lett 208:153–162

    Article  PubMed  CAS  Google Scholar 

  • Gillette WK, Elkan GH (1996) Bradyrhizobium (Arachis) sp. strain NC92 contains two nodD genes involved in the repression of nodA and a nolA gene required for the efficient nodulation of host plants. J Bacteriol 178:2757–2766

    PubMed  CAS  Google Scholar 

  • Goethals K, Van Montagu M, Holsters M (1992) Conserved motifs in a divergent nod box of Azorhizobium caulinodans ORS571 reveal a common structure in promoters regulated by LysR-type proteins. Proc Natl Acad Sci USA 89:1646–1650

    Article  PubMed  CAS  Google Scholar 

  • Göttfert M, Lamb JW, Gasser R, Semenza J, Hennecke H (1989) Mutational analysis of the Bradyrhizobium japonicum common nod genes and further nod box-linked genomic DNA regions. Mol Gen Genet 215:407–415

    Article  PubMed  Google Scholar 

  • Göttfert M, Grob P, Hennecke H (1990) Proposed regulatory pathway encoded by the nodV and nodW genes, determinants of host specificity in Bradyrhizobium japonicum. Proc Natl Acad Sci USA 87:2680–2684

    Article  PubMed  Google Scholar 

  • Göttfert M, Holzhäuser D, Bäni D, Hennecke H (1992) Structural and functional analysis of two different nodD genes in Bradyrhizobium japonicum USDA110. Mol Plant Microbe Interact 5:257–265

    PubMed  Google Scholar 

  • Göttfert M, Röthlisberger S, Kündig C, Beck C, Marty R, Hennecke H (2001) Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J Bacteriol 183:1405–1412

    Article  PubMed  Google Scholar 

  • Göttfert M, Hennecke H, Tabata S (2005) Facets of the Bradyrhizobium japonicum 110 genome. In: Palacios R, Newton WE (eds) Genomes and genomics of nitrogen-fixing organisms. Springer, Dordrecht, pp 99–111

    Chapter  Google Scholar 

  • Grob P, Michel P, Hennecke H, Göttfert M (1993) A novel response-regulator is able to suppress the nodulation defect of a Bradyrhizobium japonicum nodW mutant. Mol Gen Genet 241:531–541

    Article  PubMed  CAS  Google Scholar 

  • Grob P, Hennecke H, Göttfert M (1994) Cross-talk between the two-component regulatory systems NodVW and NwsAB of Bradyrhizobium japonicum. FEMS Microbiol Lett 120:349–353

    Article  CAS  Google Scholar 

  • Hauser F, Lindemann A, Vuilleumier S, Patrignani A, Schlapbach R, Fischer HM, Hennecke H (2006) Design and validation of a partial-genome microarray for transcriptional profiling of the Bradyrhizobium japonicum symbiotic gene region. Mol Genet Genomics 275:55–67

    Article  PubMed  CAS  Google Scholar 

  • Hauser F, Pessi G, Friberg M, Weber C, Rusca N, Lindemann A, Fischer H-M, Hennecke H (2007) Dissection of the Bradyhizobium japonicum NifA+σ54 regulon, and identification of a ferredoxin gene (fdxN) for symbiotic nitrogen fixation. Mol Genet Genomics (in press)

  • Hong H, Landauer MR, Foriska MA, Ledney GD (2006) Antibacterial activity of the soy isoflavone genistein. J Basic Microbiol 46:329–335

    Article  PubMed  CAS  Google Scholar 

  • Jabbouri S, Relić B, Hanin M, Kamalaprija P, Burger U, Promé D, Promé JC, Broughton WJ (1998) nolO and noeI (HsnIII) of Rhizobium sp. NGR234 are involved in 3-O-carbamoylation and 2-O-methylation of Nod factors. J Biol Chem 273:12047–12055

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    Article  PubMed  Google Scholar 

  • Kape R, Parniske M, Werner D (1991) Chemotaxis and nod gene activity of Bradyrhizobium japonicum in response to hydroxycinnamic acids and isoflavonoids. Appl Environ Microbiol 57:316–319

    PubMed  CAS  Google Scholar 

  • Kape R, Parniske M, Brandt S, Werner D (1992) Isoliquiritigenin, a strong nod gene- and glyceollin resistance-inducing flavonoid from soybean root exudate. Appl Environ Microbiol 58:1705–1710

    PubMed  CAS  Google Scholar 

  • Kosslak RM, Bookland R, Barkei J, Paaren HE, Appelbaum ER (1987) Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. Proc Natl Acad Sci USA 84:7428–7432

    Article  PubMed  CAS  Google Scholar 

  • Krause A, Doerfel A, Göttfert M (2002) Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol Plant Microbe Interact 15:1228–1235

    Article  PubMed  CAS  Google Scholar 

  • Lamrabet Y, Bellogin RA, Cubo T, Espuny R, Gil A, Krishnan HB, Megias M, Ollero FJ, Pueppke SG, Ruiz-Sainz JE, Spaink HP, Tejero-Mateo P, Thomas-Oates J, Vinardell JM (1999) Mutation in GDP-fucose synthesis genes of Sinorhizobium fredii alters Nod factors and significantly decreases competitiveness to nodulate soybeans. Mol Plant Microbe Interact 12:207–217

    Article  PubMed  CAS  Google Scholar 

  • Loh J, Garcia M, Stacey G (1997) NodV and NodW, a second flavonoid recognition system regulating nod gene expression in Bradyrhizobium japonicum. J Bacteriol 179:3013–3020

    PubMed  CAS  Google Scholar 

  • Loh J, Lohar DP, Andersen B, Stacey G (2002) A two-component regulator mediates population-density-dependent expression of the Bradyrhizobium japonicum nodulation genes. J Bacteriol 184:1759–1766

    Article  PubMed  CAS  Google Scholar 

  • Loh J, Stacey G (2003) Nodulation gene regulation in Bradyrhizobium japonicum: a unique integration of global regulatory circuits. Appl Environ Microbiol 69:10–17

    Article  PubMed  CAS  Google Scholar 

  • Marie C, Broughton WJ, Deakin WJ (2001) Rhizobium type III secretion systems: legume charmers or alarmers? Curr Opin Plant Biol 4:336–342

    Article  PubMed  CAS  Google Scholar 

  • Mergaert P, Van Montagu M, Holsters M (1997) The nodulation gene nolK of Azorhizobium caulinodans is involved in the formation of GDP-fucose from GDP-mannose. FEBS Lett 409:312–316

    Article  PubMed  CAS  Google Scholar 

  • Pankhurst CE, Biggs DR (1980) Sensitivity of Rhizobium to selected isoflavonoids. Can J Microbiol 26:542–545

    Article  PubMed  CAS  Google Scholar 

  • Parniske M, Ahlborn B, Werner D (1991) Isoflavonoid-inducible resistance to the phytoalexin glyceollin in soybean rhizobia. J Bacteriol 173:3432–3439

    PubMed  CAS  Google Scholar 

  • Putman M, van Veen HW, Konings WN (2000) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64:672–693

    Article  PubMed  CAS  Google Scholar 

  • Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69:326–356

    Article  PubMed  CAS  Google Scholar 

  • Regensburger B, Hennecke H (1983) RNA polymerase from Rhizobium japonicum. Arch Microbiol 135:103–109

    Article  PubMed  CAS  Google Scholar 

  • Rostas K, Kondorosi E, Horvath B, Simoncsits A, Kondorosi A (1986) Conservation of extended promoter regions of nodulation genes in Rhizobium. Proc Natl Acad Sci USA 83:1757–1761

    Article  PubMed  CAS  Google Scholar 

  • Sadowsky MJ, Tully RE, Cregan PB, Keyser HH (1987) Genetic diversity in Bradyrhizobium japonicum serogroup 123 and its relation to genotype-specific nodulation of soybean. Appl Environ Microbiol 53:2624–2630

    PubMed  CAS  Google Scholar 

  • Sadowsky MJ, Cregan PB, Göttfert M, Sharma A, Gerhold D, Rodriguez-Quinones F, Keyser HH, Hennecke H, Stacey G (1991) The Bradyrhizobium japonicum nolA gene and its involvement in the genotype-specific nodulation of soybeans. Proc Natl Acad Sci USA 88:637–641

    Article  PubMed  CAS  Google Scholar 

  • Sanjuan J, Carlson RW, Spaink HP, Bhat UR, Barbour WM, Glushka J, Stacey G (1992) A 2-O-methylfucose moiety is present in the lipo-oligosaccharide nodulation signal of Bradyrhizobium japonicum. Proc Natl Acad Sci USA 89:8789–8793

    Article  PubMed  CAS  Google Scholar 

  • Sanjuan J, Grob P, Göttfert M, Hennecke H, Stacey G (1994) NodW is essential for full expression of the common nodulation genes in Bradyrhizobium japonicum. Mol Plant Microbe Interact 7:364–369

    CAS  Google Scholar 

  • Sato H, Frank DW, Hillard CJ, Feix JB, Pankhaniya RR, Moriyama K, Finck-Barbançon V, Buchaklian A, Lei M, Long RM, Wiener-Kronish J, Sawa T (2003) The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. EMBO J 22:2959–2969

    Article  PubMed  CAS  Google Scholar 

  • Schell MA (1993) Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626

    Article  PubMed  CAS  Google Scholar 

  • Schlaman H-RM, Phillips D-A, Kondorosi E (1998) Genetic organization and transcriptional regulation of rhizobial nodulation genes. In: Spaink H, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae. Kluwer, Dordrecht, pp 361–386

    Google Scholar 

  • Schofield PR, Watson JM (1986) DNA sequence of Rhizobium trifolii nodulation genes reveals a reiterated and potentially regulatory sequence preceding nodABC and nodFE. Nucleic Acids Res 14:2891–2903

    Article  PubMed  CAS  Google Scholar 

  • Shohdy N, Efe JA, Emr SD, Shuman HA (2005) Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proc Natl Acad Sci USA 102:4866–4871

    Article  PubMed  CAS  Google Scholar 

  • Skorupska AM, Janczarek M, Marczak M, Mazur A, Król JE (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 5:7

    Article  PubMed  CAS  Google Scholar 

  • Süß C, Hempel J, Zehner S, Krause A, Patschkowski T, Göttfert M (2006) Identification of genistein-inducible and type III-secreted proteins of Bradyrhizobium japonicum. J Biotechnol 126:69–77

    Article  PubMed  CAS  Google Scholar 

  • Ulanowska K, Tkaczyk A, Konopa G, Węgrzyn G (2006) Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains. Arch Microbiol 184:271–278

    Article  PubMed  CAS  Google Scholar 

  • Wang SP, Stacey G (1991) Studies of the Bradyrhizobium japonicum nodD 1 promoter: a repeated structure for the nod box. J Bacteriol 173:3356–3365

    PubMed  CAS  Google Scholar 

  • Wilkinson SP, Grove A (2006) Ligand-responsive transcriptional regulation by members of the MarR family of winged helix proteins. Curr Issues Mol Biol 8:51–62

    PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to H. Hennecke, H-M. Fischer and S. Zehner for valuable comments on the manuscript and for discussion. This work was supported by the Bundesministerium für Bildung und Forschung as part of the program GenoMik.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Göttfert.

Additional information

Communicated by A. Hirsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, K., Lindemann, A., Hauser, F. et al. The genistein stimulon of Bradyrhizobium japonicum . Mol Genet Genomics 279, 203–211 (2008). https://doi.org/10.1007/s00438-007-0280-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0280-7

Keywords

Navigation