Skip to main content
Log in

Identification of the gene responsible for torulene cleavage in the Neurospora carotenoid pathway

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Torulene, a C40 carotene, is the precursor of the end product of the Neurospora carotenoid pathway, the C35 xanthophyll neurosporaxanthin. Torulene is synthesized by the enzymes AL-2 and AL-1 from the precursor geranylgeranyl diphosphate and then cleaved by an unknown enzyme into the C35 apocarotenoid. In general, carotenoid cleavage reactions are catalyzed by carotenoid oxygenases. Using protein data bases, we identified two putative carotenoid oxygenases in Neurospora, named here CAO-1 and CAO-2. A search for novel mutants of the carotenoid pathway in this fungus allowed the identification of two torulene-accumulating strains, lacking neurosporaxanthin. Sequencing of the cao-2 gene in these strains revealed severe mutations, pointing to a role of CAO-2 in torulene cleavage. This was further supported by the identical phenotype found upon targeted disruption of cao-2. The biological function was confirmed by in vitro assays using the purified enzyme, which cleaved torulene to produce β-apo-4′-carotenal, the corresponding aldehyde of neurosporaxanthin. The specificity of CAO-2 was shown by the lack of γ-carotene-cleaving activity in vitro. As predicted for a structural gene of the carotenoid pathway, cao-2 mRNA was induced by light in a WC-1 and WC-2 dependent manner. Our data demonstrate that CAO-2 is the enzyme responsible for the oxidative cleavage of torulene in the neurosporaxanthin biosynthetic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arrach N, Schmidhauser TJ, Avalos J (2002) Mutants of the carotene cyclase domain of al-2 from Neurospora crassa. Mol Genet Genomics 266:914–921

    Article  PubMed  CAS  Google Scholar 

  • Auldridge ME, McCarty DR, Klee HJ (2006) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9:315–321

    Article  PubMed  CAS  Google Scholar 

  • Avalos J, Cerdá-Olmedo E (1987) Carotenoid mutants of Gibberella fujikuroi. Curr Genet 25:1837–1841

    Google Scholar 

  • Avalos J, Cerdá-Olmedo E (2004) Fungal carotenoid production. In: Arora D (ed) Handbook of fungal biotechnology. Marcel Dekker, New York, pp 367–378

    Google Scholar 

  • Barua A, Olson J (2000) β-carotene is converted primarily to retinoids in rats in vivo. J Nutr 130:1996–2001

    PubMed  CAS  Google Scholar 

  • Bieszke JA, Braun EL, Bean LE, Kang S, Natvig DO, Borkovich KA (1999a) The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc Natl Acad Sci USA 96:8034–8039

    Article  PubMed  CAS  Google Scholar 

  • Bieszke JA, Spudich EN, Scott KL, Borkovich KA, Spudich JL (1999b) A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry 38:14138–14145

    Article  PubMed  CAS  Google Scholar 

  • Bouvier F, Isner JC, Dogbo O, Camara B (2005) Oxidative tailoring of carotenoids: a prospect towards novel functions in plants. Trends Plant Sci 10:187–194

    Article  PubMed  CAS  Google Scholar 

  • Bouvier F, Suire C, Mutterer J, Camara B (2003) Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. Plant Cell 15:47–62

    Article  PubMed  CAS  Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoids: handbook. Birkhauser, Boston

    Google Scholar 

  • Carattoli A, Cogoni C, Morelli G, Macino G (1994) Molecular characterization of upstream regulatory sequences controlling the photoinduced expression of the albino-3 gene of Neurospora crassa. Mol Microbiol 13:787–795

    Article  PubMed  CAS  Google Scholar 

  • Davies B (1976) Carotenoids. In: Goodwin T (eds) Chemistry and biochemistry of plant pigments. Academic, London, pp 38–165

    Google Scholar 

  • Davis RH (2000) Neurospora. Contributions of a model organism. Oxford University Press, New York

    Google Scholar 

  • Harding R, Huang P, Mitchell H (1969) Photochemical studies of the carotenoid biosynthetic pathway in Neurospora crassa. Arch Biochem Biophys 129:696–707

    Article  PubMed  CAS  Google Scholar 

  • Harding RW (1974) The effect of temperature on photo-induced carotenoid biosynthesis in Neurospora crassa. Plant Physiol 54:142–147

    PubMed  CAS  Google Scholar 

  • Harding RW, Melles S (1983) Genetic analysis of phototropism of Neurospora crassa perithecial beaks using white collar and albino mutants. Plant Physiol 72:996–1000

    Article  PubMed  Google Scholar 

  • Harding RW, Philip DQ, Drozdowicz BZ, Williams NP (1984) A Neurospora crassa mutant which overaccumulates carotenoid pigments. Neurospora newsl 31:23–25

    Google Scholar 

  • Harding RW, Turner RV (1981) Photoregulation of the carotenoid biosynthetic pathway in albino and white collar mutants of Neurospora crassa. Plant Physiol 68:745–749

    PubMed  CAS  Google Scholar 

  • Hausmann A, Sandmann G (2000) A single five-step desaturase is involved in the carotenoid biosynthesis pathway to beta-carotene and torulene in Neurospora crassa. Fungal Genet Biol 30:147–153

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  PubMed  CAS  Google Scholar 

  • Kloer DP, Ruch S, Al-Babili S, Beyer P, Schulz GE (2005) The structure of a retinal-forming carotenoid oxygenase. Science 308:267–269

    Article  PubMed  CAS  Google Scholar 

  • Kuzina V, Cerdá-Olmedo E (2006) Modification of sexual development and carotene production by acetate and other small carboxylic acids in Blakeslea trispora and Phycomyces blakesleeanus. Appl Environ Microbiol 72:4917–4922

    Article  PubMed  CAS  Google Scholar 

  • Lauter FR, Yamashiro CT, Yanofsky C (1997) Light stimulation of conidiation in Neurospora crassa: studies with the wild-type strain and mutants wc-1, wc-2 and acon-2. J Photochem Photobiol B:203–211

    Google Scholar 

  • Lee SB, Taylor JW (1990) Isolation of DNA from fungal mycelia and single spores. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. A guide to methods and applications. Academic, San Diego, pp 282–287

    Google Scholar 

  • Li C, Schmidhauser TJ (1995) Developmental and photoregulation of al-1 and al-2, structural genes for two enzymes essential for carotenoid biosynthesis in Neurospora. Dev Biol 169:90–95

    Article  PubMed  CAS  Google Scholar 

  • Linden H (2002) Blue light perception and signal transduction in Neurospora crassa. In: Osiewacz HD (eds) Molecular biology of fungal development. Marcel Dekker, New York, pp 165–185

    Google Scholar 

  • Liu Y (2003) Molecular mechanisms of entrainment in the Neurospora circadian clock. J Biol Rhythms 18:195–205

    Article  PubMed  CAS  Google Scholar 

  • McCluskey K (2003) The fungal genetics stock center: from molds to molecules. Adv Appl Microbiol 52:245–262

    Article  PubMed  Google Scholar 

  • Miller ML, Sutter RP (1984) Methyl trisporate E. A sex pheromone in Phycomyces blakesleeanus. J Biol Chem 259:6420–6422

    PubMed  CAS  Google Scholar 

  • Moise AR, von Lintig J, Palczewski K (2005) Related enzymes solve evolutionarily recurrent problems in the metabolism of carotenoids. Trends Plant Sci 10:178–186

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  PubMed  CAS  Google Scholar 

  • Nelson MA, Morelli G, Carattoli A, Romano N, Macino G (1989) Molecular cloning of a Neurospora crassa carotenoid biosynthetic gene (albino-3) regulated by blue light and the products of the white collar genes. Mol Cell Biol 9:1271–1276

    PubMed  CAS  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101:12248–12253

    Article  PubMed  CAS  Google Scholar 

  • Prado-Cabrero A, Estrada A, Al-Babili S, Avalos J (2007a) Identification and biochemical characterization of a novel carotenoid oxygenase: elucidation of the cleavage step in the Fusarium carotenoid pathway. Mol Microbiol 64:448–460

    Article  PubMed  CAS  Google Scholar 

  • Prado-Cabrero A, Scherzinger D, Avalos J, Al-Babili S (2007b) Retinal biosynthesis in Fungi: characterization of the carotenoid oxygenase CarX from Fusarium fujikuroi. Eukariot Cell 6:650–657

    Article  CAS  Google Scholar 

  • Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CA (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56:117–124

    Article  PubMed  CAS  Google Scholar 

  • Royer JC, Yamashiro CT (1992) Generation of transformable spheroplasts from mycelia, macroconidia, microconidia and germinating ascospores of Neurospora crassa. Fungal Genet Newsl 39:76–79

    Google Scholar 

  • Ruch S, Beyer P, Ernst H, Al-Babili S (2005) Retinal biosynthesis in Eubacteria: in vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC 6803. Mol Microbiol 55:1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sandmann G, Misawa N, Wiedemann M, Vittorioso P, Carattoli A, Morelli G, Macino G (1993) Functional identification of al-3 from Neurospora crassa as the gene for geranylgeranyl pyrophosphate synthase by complementation with crt genes, in vitro characterization of the gene product and mutant analysis. J Photochem Photobiol B 18:245–251

    Article  PubMed  CAS  Google Scholar 

  • Schmidhauser TJ, Lauter FR, Russo VE, Yanofsky C (1990) Cloning, sequence, and photoregulation of al-1, a carotenoid biosynthetic gene of Neurospora crassa. Mol Cell Biol 10:5064–5070

    PubMed  CAS  Google Scholar 

  • Schmidhauser TJ, Lauter FR, Schumacher M, Zhou W, Russo VE, Yanofsky C (1994) Characterization of al-2, the phytoene synthase gene of Neurospora crassa. Cloning, sequence analysis, and photoregulation. J Biol Chem 269:12060–12066

    PubMed  CAS  Google Scholar 

  • Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874

    Article  PubMed  CAS  Google Scholar 

  • Thewes S, Prado-Cabrero A, Prado MM, Tudzynski B, Avalos J (2005) Characterization of a gene in the car cluster of Fusarium fujikuroi that codes for a protein of the carotenoid oxygenase family. Mol Genet Genomics 274:217–228

    Article  PubMed  CAS  Google Scholar 

  • Vitalini MW, de Paula RM, Park WD, Bell-Pedersen D (2006) The rhythms of life: circadian output pathways in Neurospora. J Biol Rhythms 21:432–444

    Article  PubMed  CAS  Google Scholar 

  • Vollmer SJ, Yanofsky C (1986) Efficient cloning of genes of Neurospora crassa. Proc Natl Acad Sci USA 83:4869–4873

    Article  PubMed  CAS  Google Scholar 

  • von Lintig J, Vogt K (2004) Vitamin A formation in animals: molecular identification and functional characterization of carotene cleaving enzymes. J Nutr 134:251S–256S

    Google Scholar 

  • von Lintig J, Wyss A (2001) Molecular analysis of vitamin A formation: cloning and characterization of beta-carotene 15,15’-dioxygenases. Arch Biochem Biophys 385:47–52

    Article  CAS  Google Scholar 

  • Wyss A (2004) Carotene oxygenases: a new family of double bond cleavage enzymes. J Nutr 134:246S–250S

    PubMed  CAS  Google Scholar 

  • Youssar L, Schmidhauser TJ, Avalos J (2005) The Neurospora crassa gene responsible for the cut and ovc phenotypes encodes a protein of the haloacid dehalogenase family. Mol Microbiol 55:828–838

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. T. J. Schmidhauser for laboratory facilities in the search of the color mutants, Dr. Hansgeorg Ernst (BASF) for providing the apocarotenoids, Dr. Jorge Mayer for proofreading the manuscript, and Dr. Peter Beyer for valuable discussions. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) Grant AL892-3, HarvestPlus (www.harvestplus.org) and the Spanish Government (Ministerio de Ciencia y Tecnología, projects BIO2003-01548 and BIO2006-01323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Avalos.

Additional information

Communicated by J. Perez-Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saelices, L., Youssar, L., Holdermann, I. et al. Identification of the gene responsible for torulene cleavage in the Neurospora carotenoid pathway. Mol Genet Genomics 278, 527–537 (2007). https://doi.org/10.1007/s00438-007-0269-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0269-2

Keywords

Navigation