Skip to main content
Log in

Molecular analysis of Agrobacterium T-DNA integration in tomato reveals a role for left border sequence homology in most integration events

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Studies in several plants have shown that Agrobacterium tumefaciens T-DNA can integrate into plant chromosomal DNA by different mechanisms involving single-stranded (ss) or double-stranded (ds) forms. One mechanism requires sequence homology between plant target and ssT-DNA border sequences and another double-strand-break repair in which preexisting chromosomal DSBs “capture” dsT-DNAs. To learn more about T-DNA integration in Solanum lycopersicum we characterised 98 T-DNA/plant DNA junction sequences and show that T-DNA left border (LB) and right border transfer is much more variable than previously reported in Arabidopsis thaliana and Populus tremula. The analysis of seven plant target sequences showed that regions of homology between the T-DNA LB and plant chromosomal DNA plays an important role in T-DNA integration. One T-DNA insertion generated a target sequence duplication that resulted from nucleolytic processing of a LB/plant DNA heteroduplex that generated a DSB in plant chromosomal DNA. One broken end contained a captured T-DNA that served as a template for DNA repair synthesis. We propose that most T-DNA integrations in tomato require sequence homology between the ssT-DNA LB and plant target DNA which results in the generation of DSBs in plant chromosomal DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bako L, Umeda M, Tiburcio AF, Schell J, Koncz C (2003) The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc Natl Acad Sci USA 100:10108–10113

    Article  PubMed  CAS  Google Scholar 

  • Ballas N, Citovsky V (1997) Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 94:10723–10728

    Article  PubMed  CAS  Google Scholar 

  • Barker RF, Idler KB, Thompson DV, Kemp JD (1983) Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15955. Plant Mol Biol 2:335–350

    Article  CAS  Google Scholar 

  • Bundock P, Hooykaas PJJ (1996) Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proc Natl Acad Sci USA 93:15272–15275

    Article  PubMed  CAS  Google Scholar 

  • Carroll BJ, Klimyuk VI, Thomas CM, Bishop GJ, Harrison K, Scofield SR, Jones JDG (1994) Germinal transpositions of the maize element Dissociation from T-DNA loci in tomato. Genetics 139:407–420

    Google Scholar 

  • Chilton M-DM, Que QD (2003) Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration. Plant Phys 133:56–965

    Article  Google Scholar 

  • De Neve M, De Buck S, Jacobs A, Van Montagu M, Depicker A (1997) T-DNA integration in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J 11:15–29

    Article  PubMed  Google Scholar 

  • Friesner J, Britt AB (2003) Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J 34:427–440

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation; the biology behind the ‘gene-jockeying’ tool. Microbiol Mol Biol Rev 67:16–37

    Article  PubMed  CAS  Google Scholar 

  • Gheysen G, vanMontagu M, Zambryski P (1987) Integration of Agrobacterium-tumefaciens transfer DNA (T-DNA) involves rearrangements of target plant DNA-sequences. Proc Natl Acad Sci USA 84:6169–6173

    Article  PubMed  CAS  Google Scholar 

  • Gheysen G, Villarroel R, vanMontagu M (1991) Illegitimate recombination in plants—a model for T-DNA integration. Genes Dev 5:287–297

    Article  PubMed  CAS  Google Scholar 

  • Gidoni D, Fuss E, Burbidge A, Speckmann GJ, James S, Nijkamp D, Mett A, Feiler J, Smoker M, de Vroomen MJ, Leader D, Liharska T, Groenendijk J, Coppoolse E, Smit JJM, Levin I, de Both M, Schuch W, Jones JDG, Taylor IB, Theres K, van Haaren MJJ (2003) Multi-functional T-DNA/Ds tomato lines designed for gene cloning and molecular and physical dissection of the tomato genome. Plant Mol Biol 51:83–98

    Article  PubMed  CAS  Google Scholar 

  • Jones JDG, Shlumukov L, Carland F, English J, Scofield SR, Bishop GJ, Harrison K (1992) Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants. Transgenic Res 1:285–297

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Fladung M (2002) Transgene integration in aspen: structures of integration sites and mechanism of T-DNA integration. Plant J 31:543–551

    Article  PubMed  CAS  Google Scholar 

  • Li J, Manjusha V, White C, Vainstein A, Citovsky V, Tzfira T (2005a) Involvement of Ku80 in T-DNA integration in plant cells. Proc Natl Acad Sci USA 102:19321–19326

    Google Scholar 

  • Li CY, Schilmiller AL, Liu GH, Lee GI, Jayanty S, Sageman C, Vrebalov J, Giovannoni JJ, Yagi K, Kobayashi Y, Howe GA (2005b) Role of beta-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell 17:971–986

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, Ito Y, Hosoi T, Takahashi Y, Machida Y (1990) Integration of Agrobacterium T-DNA into a tobacco chromosome- possible involvement of DNA homology between T-DNA and plant DNA. Mol Gen Genet 224:309–316

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer R, KonczKalman Z, Nawrath C, Bakkeren G, Crameri A, Angelis K, Redei GP, Schell J, Hohn B, Koncz C (1991) T-DNA integration- a mode of illegitimate recombination in plants. EMBO J 10:697–704

    PubMed  CAS  Google Scholar 

  • Mysore KS, Kumar CTR, Gelvin SB (2000) Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation. Plant J 21:9–16

    Article  PubMed  CAS  Google Scholar 

  • Nester E, Gordon MP, Kerr A (2005) Agrobacterium tumefaciens: from plant pathology to biotechnology. American Phytopathological Society

  • Orel N, Kyryk A, Puchta H (2003) Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome. Plant J 35:604–612

    Article  PubMed  CAS  Google Scholar 

  • Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17:6086–6095

    Article  PubMed  CAS  Google Scholar 

  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The NO APICAL MERISTEM gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries. Cell 85:159–170

    Article  PubMed  CAS  Google Scholar 

  • Thomas CM, Jones DA, English JJ, Carroll BJ, Bennetzen JL, Harrison K, Burbidge A, Bishop GJ, Jones JDG (1994) Analysis of the chromosomal distribution of transposon-carrying T-DNAs in tomato using the inverse polymerase chain reaction. Mol Gen Genet 242:573–585

    Article  PubMed  CAS  Google Scholar 

  • Tinland B (1996) The integration of T-DNA into plant genomes. Trends Plant Sci 1:178–184

    Article  Google Scholar 

  • Tinland B, Hohn B (1995) Recombination between prokaryotic and eukaryotic DNA: integration of Agrobacterium tumefaciens T-DNA into the plant genome. Genet Eng 17:209–229

    CAS  Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotech 17:147–154

    PubMed  CAS  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2001) VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20:3596–3607

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2002) Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proc Natl Acad Sci USA 99:10435–10440

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Frankman LR, Vaidya M, Citovsky V (2003) Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Phys 133:1011–1023

    Article  CAS  Google Scholar 

  • Tzfira T, Li JX, Lacroix B, Citovsky V (2004a) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20:375–383

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2004b) Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431:87–92

    Article  PubMed  CAS  Google Scholar 

  • van Attikum H, Bundock P, Hooykaas PJJ (2001) Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO J 20:6550–6558

    Article  PubMed  Google Scholar 

  • van Attikum H, Bundock P, Hooykaas PJJ (2003a) Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae. Nucleic Acids Res 31:826–832

    Article  PubMed  Google Scholar 

  • van Attikum H, Bundock P, Overmeer RM, Lee LY, Gelvin SB, Hooykaas PJJ (2003b) The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA. Nucleic Acids Res 31:4247–4255

    Article  PubMed  Google Scholar 

  • Windels P, De Buck S, Van Bockstaele E, De Loose M, Depicker A (2003) T-DNA integration in Arabidopsis chromosomes. Presence and origin of filler DNA sequences. Plant Phys 133:2061–2068

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research in The Sainsbury Laboratory is funded by The Gatsby Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colwyn M. Thomas.

Additional information

Communicated by A. Aguilera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, C.M., Jones, J.D.G. Molecular analysis of Agrobacterium T-DNA integration in tomato reveals a role for left border sequence homology in most integration events. Mol Genet Genomics 278, 411–420 (2007). https://doi.org/10.1007/s00438-007-0259-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0259-4

Keywords

Navigation