Skip to main content
Log in

Switch from θ to σ replication of bacteriophage λ DNA: factors involved in the process and a model for its regulation

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Bacteriophage λ genome is one of the classical model replicons in studies on the regulation of DNA replication. Moreover, since genes coding for Shiga toxins are located in genomes of lambdoid phages, understanding of mechanisms controlling λ DNA replication may be of bio-medical importance. During lytic development of bacteriophage λ, its genome is replicated according to the θ (circle-to-circle) mode early after infection, and then it is switched to the σ (rolling circle) mode. Two mechanisms of regulation of this switch were proposed recently and both suggested a crucial role for directionality of λ DNA replication. Whereas one hypothesis assumed transient impairment of ClpP/ClpX-mediated proteolysis of the λO initiator protein, another suggested a crucial role for transcriptional activation of the oriλ region and factors involved in the control of the p R promoter activity. Here we demonstrate that mutations in clpP and clpX genes had little influence on both directionality of λ DNA replication and appearance of σ replication intermediates. On the other hand, regulators affecting activity of the p R promoter (responsible for initiation of transcription, which activates oriλ) directly or indirectly influenced directionality of λ DNA replication to various extents. Therefore, we conclude that regulation of the efficiency of transcriptional activation of oriλ, rather than transient impairment of the λO proteolysis, is responsible for the control of the switch from θ to σ replication, and propose a model for this control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alfano C, McMacken R (1989a) Ordered assembly of nucleoprotein structures at the bacteriophage lambda replication origin during the initiation of DNA replication. J Biol Chem 264:10699–10708

    CAS  Google Scholar 

  • Alfano C, McMacken R (1989b) Heat shock protein-mediated disassembly of nucleoprotein structures is required for initiation of bacteriophage λ DNA replication. J Biol Chem 264:10709–10718

    CAS  Google Scholar 

  • Barańska S, Gabig M, Węgrzyn A, Konopa G, Herman-Antosiewicz A, Hernandez P, Schvartzman JB, Helinski DR, Węgrzyn G (2001) Regulation of the switch from early to late bacteriophage λ DNA replication mode. Microbiology 147:535–547

    PubMed  Google Scholar 

  • Barańska S, Konopa G, Węgrzyn G (2002) Directionality of λ plasmid DNA replication carried out by the heritable replication complex. Nucleic Acids Res 30:1176–1181

    Article  PubMed  Google Scholar 

  • Bejarano I, Klemes Y, Schoulaker-Schwarz R, Engelberg-Kulka H (1993) Energy-dependent degradation of λO protein in Escherichia coli. J Bacteriol 175:7720–7723

    PubMed  CAS  Google Scholar 

  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113

    Article  PubMed  CAS  Google Scholar 

  • Bull HJ (1995) Bacteriophage lambda replication—coupled processes, genetic elements and regulatory choices. PhD Thesis, University of Saskatchewan, Canada

  • Burkardt H, Lurz R (1984) Electron microscopy. In: Puhler A, Timmis KN (eds) Advanced molecular genetics. Srpinger, Berlin, pp 281–313

    Google Scholar 

  • Czyż A, Zielke R, Węgrzyn G (2001) Rapid degradation of bacteriophage λ O protein by ClpP/ClpX protease influences the lysis-versus-lysogenization decision of the phage under certain growth conditions of the host cells. Arch Virol 146:1487–1498

    Article  PubMed  Google Scholar 

  • Datta I, Banik-Maiti S, Adhikari L, Sau S, Das N, Mandal NC (2005a) The mutation that makes Escherichia coli resistant to λ P gene-mediated host lethality is located within DNA initiator gene dnaA of the bacterium. J Biochem Mol Biol 38:89–96

    CAS  Google Scholar 

  • Datta I, Sau S, Sil AK, Mandal NC (2005b) The bacteriophage λ DNA replication protein P inhibits the oriC DNA- and ATP-binding functions of the DNA replication initiator protein DnaA of Escherichia coli. J Biochem Mol Biol 38:97–103

    CAS  Google Scholar 

  • Dodson M, Echols H, Wickner S, Alfano C, Mensa-Wilmot K, Gomes B, LeBowitz J, Roberts JD, McMacken R (1986) Specialized nucleoprotein structures at the origin of replication of bacteriophage λ: localized unwinding of duplex DNA by a six protein reaction. Proc Natl Acad Sci USA 83:7638–7642

    Article  PubMed  CAS  Google Scholar 

  • Friedman DI, Court DL (2001) Bacteriophage lambda: alive and well and still doing its thing. Curr Opin Microbiol 4:201–207

    Article  PubMed  CAS  Google Scholar 

  • Glinkowska M, Majka J, Messer W, Węgrzyn G (2003) The mechanism of regulation of bacteriophage λ p R promoter activity by Escherichia coli DnaA protein. J Biol Chem 278:22250–22256

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S, Clark WP, de Crecy-Lagard V, Maurizi MR (1993) ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. J Biol Chem 268:22618–22626

    PubMed  CAS  Google Scholar 

  • Herman-Antosiewicz A, Śrutkowska S, Taylor K, Węgrzyn G (1998) Replication and maintenance of λ plasmids devoid of the Cro repressor autoregulatory loop in Escherichia coli. Plasmid 40:113–125

    Article  PubMed  CAS  Google Scholar 

  • Jensen KF (1993) The Escherichia coli “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407

    PubMed  CAS  Google Scholar 

  • Kiger JA Jr, Sinsheimer RL (1971) DNA of vegetative bacteriophage lambda, VI. Electron microscopic studies of replicating lambda DNA. Proc Natl Acad Sci USA 68:112–115

    Article  PubMed  CAS  Google Scholar 

  • Konopa G, Barańska S, Węgrzyn A, Węgrzyn G (2000) Bacteriophage and host mutants causing the rolling-circle λ DNA replication early after infection. FEBS Lett 472:217–220

    Article  PubMed  CAS  Google Scholar 

  • Kur J, Górska I, Taylor K (1987) Escherichia coli dnaA initiation function is required for replication of plasmids derived from coliphage lambda. J Mol Biol 198:203–210

    Article  PubMed  CAS  Google Scholar 

  • Learn B, Karzai AW, McMacken R (1993) Transcription stimulates the establishment of bidirectional λ DNA replication in vitro. Cold Spring Harbor Symp Quant Biol 58:389–402

    PubMed  CAS  Google Scholar 

  • Mensa-Wilmot K, Seaby R, Alfano C, Wold MS, Gomes B, McMacken R (1989) Reconstitution of a nine-protein system that initiates bacteriophage λ DNA replication. J Biol Chem 264:2853–2861

    PubMed  CAS  Google Scholar 

  • Reuben RC, Skalka A (1977) Identification of the site of interruption in relaxed circles producing during bacteriophage λ DNA circle replication. J Virol 21:673–682

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory mannual. Cold Spring Harbor laboratory press, Cold Spring Harbor

    Google Scholar 

  • Śrutkowska S, Konopa G, Węgrzyn G (1998) A method for isolation of plasmid DNA replication intermediates from unsynchronized bacterial cultures for electron microscopy analysis. Acta Biochim Pol 45:233–240

    PubMed  Google Scholar 

  • Śrutkowska S, Caspi R, Gabig M, Węgrzyn G (1999) Detection of DNA replication intermediates after two-dimensional agarose gel electrophoresis using a fluorescein-labeled probe. Anal Biochem 269:221–222

    Article  PubMed  Google Scholar 

  • Szalewska-Pałasz A, Węgrzyn A, Błaszczak A, Taylor K, Węgrzyn G (1998a) DnaA-stimulated transcriptional activation of oriλ: Escherichia coli RNA polymerase β subunit as a transcriptional activator contact site. Proc Natl Acad Sci USA 95:4241–4246

    Article  Google Scholar 

  • Szalewska-Pałasz A, Weigel C, Speck C, Śrutkowska S, Konopa G, Lurz R, Marszałek J, Taylor K, Messer W, Węgrzyn G (1998b) Interaction of the Escherichia coli DnaA protein with bacteriophage λ DNA. Mol Gen Genet 259:679–688

    Article  Google Scholar 

  • Takahashi S (1975) The starting point and direction of rolling-circle replicative intermediates of coliphage λ DNA. Mol Gen Genet 142:137–153

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S (1977) Rolling circle replicative structure of bacteriophage λ DNA in a recombination deficient system. Mol Gen Genet 152:201–204

    Article  PubMed  CAS  Google Scholar 

  • Taylor K, Węgrzyn G (1995) Replication of coliphage lambda DNA. FEMS Microbiol Rev 17:109–119

    Article  PubMed  CAS  Google Scholar 

  • Taylor K, Węgrzyn G (1998) Regulation of bacteriophage λ replication. In: Busby SJW, Thomas CMN, Brown L (eds) Molecular microbiology. Springer, Berlin, pp 81–97

    Google Scholar 

  • Viguera E, Hernandez P, Krimer DB, Boistov AS, Lurz R, Alonso JC, Schvartzman JB (1996) The ColE1 unidirectional origin acts as a polar replication fork pausing site. J Biol Chem 271:22414–22421

    Article  PubMed  CAS  Google Scholar 

  • Viguera E, Rodríguez A, Krimer DB, Hernández P, Trelles O, Schvartzman JB (1998) A computer model for the analysis of DNA replication intermediates by two-dimensional (2D) agarose gel electrophoresis. Gene 217:41–49

    Article  PubMed  CAS  Google Scholar 

  • Waldor MK, Friedman DI (2005) Phage regulatory circuits and virulence gene expression. Curr Opin Microbiol 8:459–465

    Article  PubMed  CAS  Google Scholar 

  • Węgrzyn G, Taylor K (1992) Inheritance of the replication complex by one of two daughter copies during λ plasmid replication in Escherichia coli. J Mol Biol 226:681–688

    Article  PubMed  Google Scholar 

  • Węgrzyn A, Węgrzyn G (2001) Inheritance of the replication complex: a unique or common phenomenon in the control of DNA replication? Arch Microbiol 175:86–93

    Article  PubMed  Google Scholar 

  • Węgrzyn G, Węgrzyn A (2002) Stress responses and replication of plasmids in bacterial cells. Microb Cell Factor 1:2

    Article  Google Scholar 

  • Węgrzyn G, Węgrzyn A (2005) Genetic switches during bacteriophage lambda development. Prog Nucleic Acid Res Mol Biol 79:1–48

    Article  PubMed  CAS  Google Scholar 

  • Węgrzyn G, Pawłowicz A, Taylor K (1992) Stability of coliphage λ DNA replication initiator, the λO protein. J Mol Biol 226:675–680

    Article  PubMed  Google Scholar 

  • Węgrzyn A, Węgrzyn G, Taylor K (1995) Plasmid and host functions required for λ plasmid replication carried out by the inherited replication complex. Mol Gen Genet 247:501–508

    Article  PubMed  Google Scholar 

  • Węgrzyn G, Szalewska-Pałasz A, Węgrzyn A, Obuchowski M, Taylor K (1995a) Transcriptional activation of the origin of coliphage λ DNA replication is regulated by the host DnaA initiator function. Gene 154:47–50

    Article  Google Scholar 

  • Węgrzyn G, Węgrzyn A, Konieczny I, Bielawski K, Konopa G, Obuchowski M, Helinski DR, Taylor K (1995b) Involvement of the host initiator function dnaA in the replication of coliphage λ. Genetics 139:1469–1481

    Google Scholar 

  • Węgrzyn A, Węgrzyn G, Herman A, Taylor K (1996) Protein inheritance: λ plasmid replication perpetuated by the heritable replication complex. Genes Cells 1:953–963

    Article  PubMed  Google Scholar 

  • Węgrzyn A, Czyż A, Gabig M, Węgrzyn G (2000) ClpP/ClpX-mediated degradation of the bacteriophage λ O protein and regulation of λ phage and λ plasmid replication. Arch Microbiol 174:89–96

    Article  PubMed  Google Scholar 

  • Węgrzyn G, Węgrzyn A, Barańska S, Czyż A (2001) Regulation of bacteriophage lambda development. Recent Res Dev Virol 3:375–386

    Google Scholar 

  • Weigel C, Seitz H (2006) Bacteriophage replication modules. FEMS Microbiol Rev 30:321–381

    Article  PubMed  CAS  Google Scholar 

  • Wojtkowiak D, Georgopoulos C, Żylicz M (1993) Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease of Escherichia coli. J Biol Chem 268:22609–22617

    PubMed  CAS  Google Scholar 

  • Żylicz M, Ang D, Liberek K, Georgopoulos C (1989) Initiation of λ DNA replication with purified host- and bacteriophage-encoded proteins: role of the DnaK, DnaJ and GrpE heat shock proteins. EMBO J 8:1601–1608

    PubMed  Google Scholar 

  • Żylicz M, Liberek K, Wawrzynów A, Georgopoulos C (1998) Formation of the preprimosome protects λ O from RNA transcription-dependent proteolysis by ClpP/ClpX. Proc Natl Acad Sci USA 95:15259–15263

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Assistance of Elżbieta Borysiewicz during some experiments is greatly acknowledged. This work was supported by the Ministry of Science and Higher Education (project grant no. N301 122 31/3747).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Węgrzyn.

Additional information

Communicated by G. Klug.

Magdalena Narajczyk and Sylwia Barańska contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narajczyk, M., Barańska, S., Węgrzyn, A. et al. Switch from θ to σ replication of bacteriophage λ DNA: factors involved in the process and a model for its regulation. Mol Genet Genomics 278, 65–74 (2007). https://doi.org/10.1007/s00438-007-0228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0228-y

Keywords

Navigation