Skip to main content
Log in

Arabidopsis–rice–wheat gene orthologues for Na+ transport and transcript analysis in wheat–L. elongatum aneuploids under salt stress

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Lophopyrum elongatum is a wild relative of wheat that provides a source of novel genes for improvement of the salt tolerance of bread wheat. Improved Na+ ‘exclusion’ is associated with salt tolerance in a wheat–L. elongatum amphiploid, in which a large proportion (ca. 50%) of the improved regulation of leaf Na+ concentrations is controlled by chromosome 3E. In this study, genes that might control Na+ accumulation, such as for transporters responsible for Na+ entry (HKT1) and exit (SOS1) from cells, or compartmentalisation within vacuoles (NHX1, NHX5, AVP1, AVP2) in the model plant, Arabidopsis thaliana, were targeted for comparative analyses in wheat. Putative rice orthologues were identified and characterised as a means to bridge the large evolutionary distance between genomes from the model dicot and the more complex grass species. Wheat orthologues were identified through BLAST searching to identify either FL-cDNAs or ESTs and were subsequently used to design primers to amplify genomic DNA. The probable orthologous status of the wheat genes was confirmed through demonstration of similar intron–exon structure with their counterparts in Arabidopsis and rice. The majority of exons for Arabidopsis, rice and wheat orthologues of NHX1, NHX5 and SOS1 were conserved except for those at the amino and carboxy terminal ends. However, additional exons were identified in the predicted NHX1 and SOS1 genes of rice and wheat, as compared with Arabidopsis, indicating gene rearrangement events during evolution from a common ancestor. Nullisomic–tetrasomic, deletion and addition lines in wheat were used to assign gene sequences to chromosome regions in wheat and L. elongatum. Most sequences were assigned to homoeologous chromosomes, however, in some instances, such as for SOS1, genes were mapped to other unpredicted locations. Differential transcript abundance under salt stress indicated a complex pattern of expression for wheat orthologues that may regulate Na+ accumulation in wheat lines containing chromosomes from L. elongatum. The identification of wheat orthologues to well characterized Arabidopsis genes, map locations and gene expression profiles increases our knowledge on the complex mechanisms regulating Na+ transport in wheat and wheat–L. elongatum lines under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amtmann A, Sanders D (1999) Mechanisms of Na+ uptake by plant cells. Adv Bot Res 29:76–104

    Google Scholar 

  • Apse M, Aharon G, Snedden W, Blumwald E (1999) Salt tolerance conferred by over-expression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Berthomieu P, Conejero G, Nublat A, Brackenbury W, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah P, Tester M, Very A, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Barakat A, Guyot R, Cooke R, Delseny M (2000) Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12:1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E, Aharon G, Apse M (2000) Sodium transport in plant cells. Biochim Biophys Acta Biomembr 1465:140–151

    Article  CAS  Google Scholar 

  • Bowers JE, Chapman BA, Rong JA, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  PubMed  CAS  Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078

    Article  PubMed  CAS  Google Scholar 

  • Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transportin durum wheat. Plant Physiol 137:807–818

    Article  PubMed  CAS  Google Scholar 

  • Dewey DR (1960) Salt tolerance of twenty-five strains of Agropyron. Agron J 52:631–635

    Article  Google Scholar 

  • Drozdowicz YM, Kissinger JC, Rea PA (2000) AVP2, a sequence-divergent, K+-insensitive H+-translocating inorganic pyrophosphatase from Arabidopsis. Plant Physiol 123:353–362

    Article  PubMed  CAS  Google Scholar 

  • Dvořák J (1979) Metaphase I pairing frequencies of individual Agropyrum elongatum chromosome arms with Triticum chromosomes. Can J Genet Cytol 21:243–254

    Google Scholar 

  • Dvořák J (1980) Homoeology between Agropyron elongatum chromosomes and Triticum aestivum chromosomes. Can J Genet Cytol 22:237–259

    Google Scholar 

  • Dvořák J, Knott D (1974) Disomic and ditelosomic additions of diploid Agropyron elongatum chromosomes to Triticum aestivum. Can J Genet Cytol 16:399–417

    Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in Arabidopsis. Plant Physiol 133:307–318

    Article  PubMed  CAS  Google Scholar 

  • Garciadeblas B, Senn ME, Banuelos MA, Rodriguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola R, Rao R, Sherman A, Grisafi P, Alper S, Fink G (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA 96:1480–1485

    Article  PubMed  CAS  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. UNSW Press, CAB International, Sydney, Wallingford

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong JP, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Gorham J (1994) Salt tolerance in the Triticeae: K/Na discrimination in some perennial wheatgrasses and their amphiploids with wheat. J Exp Bot 45:441–447

    Article  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Hart G, Tuleen N (1983) Chromosomal locations of eleven Elytrigia elonga (=Agropyron elongatum) isozyme structural genes. Genet Res 41:181–202

    Article  Google Scholar 

  • Jauhar PP, Peterson TS (1996) Thinopyrum and Lophopyrum as sources of genes for wheat improvement. Cereal Res Comm 24:15–21

    Google Scholar 

  • Kellogg E (1998) Who’s related to whom? Recent results from molecular systematic studies. Curr Opin Plant Biol 1:149–158

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T (2003) Collection, mapping and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379

    Article  PubMed  Google Scholar 

  • Kim E, Zhen R, Rea PA (1994) Heterologous expression of plant vacuolar pyrohosphatase in yeast demonstrates sufficiency of the substrate-binding subunit for proton transport. Proc Natl Acad Sci USA 91:6128–6132

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Zhen R, Rea PA (1995) Site directed mutagenesis of vacuolar H+-pyrophosphatase: necessity of Cys634 for inhibition by maleimides but not catalysis. J Biol Chem 270:2630–2635

    Article  PubMed  CAS  Google Scholar 

  • Kingsbury R, Epstein E (1984) Selection for salt-resistant spring wheat. Crop Sci 24:310–315

    Article  Google Scholar 

  • Lai J, Ma J, Swigoňová Z, Ramakrishna W, Linton E, Llaca V, Tanyolac B, Park YJ, Jeong OY, Bennetzen JL, Messing J (2004) Gene loss and movement in the maize genome. Genome Res 14:1924–1931

    Article  PubMed  CAS  Google Scholar 

  • McGuire P, Dvořák J (1981) High salt-tolerance potential in wheatgrasses. Crop Sci. 21:702–705

    Article  Google Scholar 

  • Morsomme P, Boutry M (2000) The plant plasma membrane H+-ATPase: structure, function and regulation. Biochim Biophys Acta Biomembr 1465:1–16

    Article  CAS  Google Scholar 

  • Munns R, James R (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218

    Article  CAS  Google Scholar 

  • Nemoto Y, Sasakuma T (2000) Specific expression of glucose-6-phosphate dehydrogenase (G6PDH) gene by salt stress in wheat (Triticum aestivum L.). Plant Sci 58:53–60

    Article  Google Scholar 

  • Omielan JA, Epstein E, Dvořák J (1991) Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant Lophopyrum elongatum. Genome 34:961–974

    Google Scholar 

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747

    Article  PubMed  CAS  Google Scholar 

  • Paterson A, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908

    Article  PubMed  CAS  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    Article  CAS  Google Scholar 

  • Qi L, Echalier B, Friebe B, Gill BS (2003) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genom 3:39–55

    CAS  Google Scholar 

  • Quintero FJ, Blatt MR, Pardo JM (2000). Functional conservation between yeast and plant endosomal Na+/H+ antiporters. FEBS Lett 471:224–228

    Article  PubMed  CAS  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genet 37:1141–1146

    Article  PubMed  CAS  Google Scholar 

  • Reyes JC, Muro-Pastor MI, Florencio FJ (2004) The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol 134:1718–1732

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160

    Article  PubMed  CAS  Google Scholar 

  • Rus AM, Bressan RA, Hasegawa PM (2006) Unraveling salt tolerance in crops. Nature Genet 37:1029–1030

    Article  CAS  Google Scholar 

  • Salam A, Hollington PA, Gorham J, Wyn Jones RG, Gliddon C (1999) Physiological genetics of salt tolerance in wheat (Triticum aestivum L.): performance of wheat varieties, inbred lines and reciprocal F1 hybrids under saline conditions. J Agron Crop Sci 183:145–156

    Article  CAS  Google Scholar 

  • Sarafian V, Kim Y, Poole RJ, Rea PA (1992) Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. Proc Natl Acad Sci USA 89:1775–1779

    Article  PubMed  CAS  Google Scholar 

  • Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370:655–658

    Article  PubMed  CAS  Google Scholar 

  • Schoof H, Zaccaria P, Gundlach H, Lemcke K, Rudd S, Kolesov G, Arnold R, Mews H, Mayer K (2002) MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource based on the first complete plant genome. Nucleic Acids Res 30:91–93

    Article  PubMed  CAS  Google Scholar 

  • Seoighe C, Gehring C (2004) Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome. Trends Genet 20:461–464

    Article  PubMed  CAS  Google Scholar 

  • Serrano R (1996) Salt tolerance in plants and micro-organisms: toxicity targets and defence responses. In: Jeon KW (ed) International review of cytology: a survey of cell biology, Vol 165. Academic, New York, pp 1–52

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Quintero F, Pardo JM, Zhu J (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    Article  PubMed  CAS  Google Scholar 

  • Shiu S-H, Karlowski W, Pan R, Tzeng Y-H, Mayer KFX, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234

    Article  PubMed  CAS  Google Scholar 

  • Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ uploading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938

    Article  PubMed  CAS  Google Scholar 

  • Tatusov R, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–813

    Google Scholar 

  • Tian C, Wan P, Sun S, Li J, Chen M (2004) Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol Biol 54:519–532

    Article  PubMed  CAS  Google Scholar 

  • Lijavetzky D, Carbonero P, Vicente-Carbajosa J (2003) Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol Biol 3:17

    Article  PubMed  Google Scholar 

  • Tuleen N, Hart G (1988) Isolation and characterisation of wheat–Elytrigia elongata chromosome 3E and 5E addition and substitution lines. Genome 30:519–524

    Google Scholar 

  • Uozumi N, Kim E, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker E, Nakamura T, Schroeder J (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249–1259

    Article  PubMed  CAS  Google Scholar 

  • Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290:2114–2117

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Yahiaoui N, Guyot R, Schlagenhauf E, Liu Z-D, Dubcovsky J, Keller B (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell 15:1186–1197

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Gouy M, Yang YW, Sharp PM, Li WH (1989) Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86:6201–6205

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Liu T, Tian C, Sun S, Li J, Chen M (2005) Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol 59:191–203

    Article  PubMed  CAS  Google Scholar 

  • Yeo AR, Flowers TJ (1983) Varietal differences in the toxicity of sodium ions in rice leaves. Physiol Plant 59:189–195

    Article  CAS  Google Scholar 

  • Yokoi S, Quintero F, Cubero B, Ruiz M, Bressan R, Hasegawa P, Pardo J (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama R, Nishitani K (2004) Genomic basis for cell wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol 45:1111–1121

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong K, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Zhen R, Kim E, Rea P (1994) Localization of cytosolically oriented maleimide-reactive domain of vacuolar H(+)-pyrophosphatase. J Biol Chem 269:23342–23350

    PubMed  CAS  Google Scholar 

  • Zhen R, Kim E, Rea P (1997) Acidic residues necessary for pyrophoshpate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N′-dicyclohexylcarbodiimide. J Biol Chem 272:22340–22348

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Esther Walker for technical assistance and sequence analysis. The authors thank Prof Jan Dvorak (UC Davis, USA) for access and use of the wheat–L. elongatum aneuploid lines. This work was supported by funding from Grains Research Development Corporation through project GRS56 awarded to DJM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Francki.

Additional information

Communicated by W.R. McCombie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullan, D.J., Colmer, T.D. & Francki, M.G. Arabidopsis–rice–wheat gene orthologues for Na+ transport and transcript analysis in wheat–L. elongatum aneuploids under salt stress. Mol Genet Genomics 277, 199–212 (2007). https://doi.org/10.1007/s00438-006-0184-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0184-y

Keywords

Navigation