Skip to main content
Log in

Molecular characterization and genomic distribution of Isis: a new retrotransposon of Drosophila buzzatii

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

A new transposable element, Isis, is identified as a LTR retrotransposon in Drosophila buzzatii. DNA sequence analysis shows that Isis contains three long ORFs similar to gag, pol and env genes of retroviruses. The ORF1 exhibits sequence homology to matrix, capsid and nucleocapsid gag proteins and ORF2 encodes a putative protease (PR), a reverse transcriptase (RT), an Rnase H (RH) and an integrase (IN) region. The analysis of a putative env product, encoded by the env ORF3, shows a degenerated protein containing several stop codons. The molecular study of the putative proteins coded by this new element shows striking similarities to both Ulysses and Osvaldo elements, two LTR retrotransposons, present in D. virilis and D. buzzatii, respectively. Comparisons of the predicted Isis RT to several known retrotransposons show strong phylogenetic relationships to gypsy-like elements, particulary to Ulysses retrotransposon. Studies of Isis chromosomal distribution show a strong hybridization signal in centromeric and pericentromeric regions, and a scattered distribution along all chromosomal arms. The existence of insertional polymorphisms between different strains and high molecular weight bands by Southern blot suggests the existence of full-sized copies that have been active recently. The presence of euchromatic insertion sites coincident between Isis and Osvaldo could indicate preferential insertion sites of Osvaldo element into Isis sequence or vice versa. Moreover, the presence of Isis in different species of the buzzatii complex indicates the ancient origin of this element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abe H, Kanehara M, Terada T, Ohbayashi F, Shimada T, Kawai S, Suzuki M, T Sugasaki T, Oshiki T (1998) Identification of novel random amplified polymorphic DNAs (RAPDs) on the W chromosome of the domesticated silkworm, Bombyx mori, and the wild silkworm B. mandarina, and their retrotransposable-related nucleotide sequences. Genes Genet Sys 73:243–254

    Article  CAS  Google Scholar 

  • Abe H, Ohbayashi F, Shimada T, Sugasaki T, Kawai S, Mita K, Oshiki T (2000) Molecular structure of a novel gypsy- Ty3-like retrotransposon (Kabuki) and nested retrotransposable elements on the W chromosome of the silkwom Bombyx mori. Mol Gen Genet 263:916–924

    Article  PubMed  CAS  Google Scholar 

  • Boeke JD, Eichinger D, Castrillon D, Fink GR (1988) The Sacharomyces cerevisiae genome contains functional and non functional copies of transposon Ty1. Mol Cell Biol 8:1432–1442

    PubMed  CAS  Google Scholar 

  • Cáceres M, Ranz JM, Barbadilla A, Long M, Ruiz A (1999) Generation of a widespread Drosophila inversion by a transposable element. Science 285:415–418

    Article  PubMed  Google Scholar 

  • Cañizares J, Grau M, Paricio N, Moltó MD (2000) Tirant is a new member of the gypsy family of retrotransposons in Drosophila melanogaster. Genome 43:9–14

    Article  PubMed  Google Scholar 

  • Capy P, Vitalis R, Langin T, Higuet D, Bazin C (1996) Relationships between transposable elements based upon the integrase-transposase domains: is there a common ancestor? J Mol Evol 42:359–368

    PubMed  CAS  Google Scholar 

  • Casals F, Caceres M, Manfrin MH, González J, Ruiz A (2005) Molecular characterization and chromosomal distribution of Galileo, Kepler and Newton, three Foldback transposable elements of the Drosophila buzzatii species complex. Genetics 169:2047–2059

    Article  PubMed  CAS  Google Scholar 

  • Christy RJ, Brown AR, Gourlie BB, Huang RCC (1985) Nucleotide sequences of murine intracisternal A-particle gene LTRs have extensive variability within the R region. Nucleic Acids Res 13:289–302

    PubMed  CAS  Google Scholar 

  • Conte C, Calco V, Desset S, Leblanc P, Dastugue B, Vaury C (2000) Impact of multiple insertions of two retroelements, Zam and Idefix at an euchromatic locus. Genetica 109:53–59

    Article  PubMed  CAS  Google Scholar 

  • Covey SN (1986) Amino acid homology in gag regions of reverse transcribing elements and the coat protein gene of caulifower mosaic virus. Nucleic Acids Res 14:623–633

    PubMed  CAS  Google Scholar 

  • Doolittle RF, Feng DF, Johnson MS, McClure MA (1989) Origin and evolutionary relationships of retroviruses. Q Rev Biol 64:1–30

    Article  PubMed  CAS  Google Scholar 

  • Evgen’ev MB, Corces VG, Lankenau DH (1992) Ulysses transposable element of Drosophila shows high structural similarities to functional domains of retroviruses. J Mol Biol 225:917–924

    Article  PubMed  CAS  Google Scholar 

  • Evgen’ev MB, Zelentsova H, Poluectova H, Lyozin GT, Veleikodvorskaja V, Pyatkov KI, Zhivotovsky LA, Kidwell MG (2000) Mobile elements and chromosomal evolution in the virilis group of Drosophila. Proc Natl Acad Sci USA 10:11337–11342

    Article  Google Scholar 

  • Francino O, Cabré O, Fontdevila A (1993) Distribution of the copia transposable element in the repleta group of Drosophila. Genet Sel Evol 25:501–516

    CAS  Google Scholar 

  • Friesen PD, Niessen M (1990) Gene organization and trascription of TED, a lepidopteran retrotransposon integrated within the baculovirus genome. Mol Cell Biol 10:3067–3077

    PubMed  CAS  Google Scholar 

  • García Guerreiro MP, Fontdevila A (2001) Chromosomal distribution of the transposable elements Osvaldo and blanco in original and colonizer populations of Drosophila buzzatii. Genet Res 77:227–238

    Article  Google Scholar 

  • Gorelick RJ, Gagliardi TD, Bosche WJ, Wiltrout TA, Coren LV, Chabot DJ, Lifson JD, Henderson LE, Arthur LO (1999) Strict conservation of the retroviral nucleocapsid protein zinc finger is strongly influenced by its role in viral infection processes: characterization of HIV-1 particles containing mutant nucleocapsid zinc-coordinating sequences. Virology 256:92–104

    Article  PubMed  CAS  Google Scholar 

  • Higgins DG, Thompson JD, Saigo K (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266:383–402

    Article  PubMed  CAS  Google Scholar 

  • Hirsch MS, Curran J (1990) Human immunodeficiency viruses. In: Fields BN, Knipe DM (eds) Virology. Raven Press, New York

    Google Scholar 

  • IHGSC (International Human Genome Sequencing Consortium) (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • Inouye S, Yuki S, Saigo K (1986) Complete nucleotide sequence and genome organization of Drosophila transposable genetic element, 297. Eur J Biochem 154:417–425

    Article  PubMed  CAS  Google Scholar 

  • Kaminker JSC, Bergman CM, Kronmiller B, Carlson J, Svirskas R, Patel S, Frise E, Wheeler DA, Lewis SE, Rubin GM, Ashburner M, Celniker SE (2002) The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol 3: Research0084

  • Ke N, Voytas DF (1997) High frequency cDNA recombination of the Saccharomyces retrotransposon Ty5: the LTR mediates formation of tandem elements. Genetics 147:545–556

    PubMed  CAS  Google Scholar 

  • Khan E, Mack JPG, Katz RK, Kulkosky J, Skalka AM (1990) Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res 4:851–860

    Google Scholar 

  • Kolesnikov AV, Ponomarenko NA, Churikov NA (1996) Analysis of copies of the suffix-retrotransposon of Drosophila, produced using PCR on genomic DNA. Genetika 32:150–153

    PubMed  CAS  Google Scholar 

  • Kumar SK, Tamura IB, Jakobsen M, Nei M (2001) MEGA-2: Molecular Evolutionary Genetics Analysis software. Arizona, USA

  • Labrador M, Fontdevila A (1994) High transposition rates of Osvaldo, a new D. buzzatii retrotransposon. Mol Gen Genet 245:661–674

    Article  PubMed  CAS  Google Scholar 

  • Labrador M, Naveira H, Fontdevila A (1990) Genetic mapping of the Adh locus in the repleta group of Drosophila by in situ hybridization. J Hered 81:83–86

    PubMed  CAS  Google Scholar 

  • Labrador M, Seleme MC, Fontdevila A (1998) The evolutionary history of D. buzzatii. XXXIV. The distribution of the retrotransposon Osvaldo in original an colonizer populations. Mol Biol Evol 15:1532–1547

    PubMed  CAS  Google Scholar 

  • Lankenau DH, Hauijser P, Jansen E, Miedema K, Henning W (1988) Micropia: a retrotransposon of Drosophila combining structural features of DNA viruses, retroviruses and non-viral transposable elements. J Mol Biol 204:233–246

    Article  PubMed  CAS  Google Scholar 

  • Leblanc P, Desset S, Dastugue B, Vaury C (1997) Invertebrate retroviruses: ZAM a new candidate in D. melanogaster. EMBO J 16:7521–7531

    Article  PubMed  CAS  Google Scholar 

  • Losada A, Abad JP, Villasante A (1997) Organization of DNA sequences near the centromere of the Drosophila melanogaster Y chromosome. Chromosoma 106:503–512

    Article  PubMed  CAS  Google Scholar 

  • Maniatis TE, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Marin I, Labrador M, Fontdevila A (1992) The evolutionary history of Drosophila buzzatii. XXII. High content of nonsatellite repetitive DNA in D. buzzatii and its sibling D. koepferae. Genome 35:967–974

    PubMed  CAS  Google Scholar 

  • Marlor RL, Parkhust SM, Corces VG (1986) The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. Mol Cell Biol 6:1129–1134

    PubMed  CAS  Google Scholar 

  • McClure MA (1991) Evolution of retrotransposons by acquisition or deletion of retrovirus-like genes. Mol Biol Evol 8:835–856

    PubMed  CAS  Google Scholar 

  • McClure MA (1992) Sequence analysis of eukaryotic retroid proteins. Math Comput Model 16:121–136

    Article  Google Scholar 

  • Mount SM, Rubin GM (1985) Complete nucleotide sequence of the Drosophila transposable element copia: homology between copia and retroviral proteins. Mol Cell Biol 5:1630–1638

    PubMed  CAS  Google Scholar 

  • Mugnier N, Biémont C, Vieira C (2005) New regulatory regions of Drosophila 412 retrotransposable element generated by recombination. Mol Biol Evol 22:747–757

    Article  PubMed  CAS  Google Scholar 

  • Nadir E, Margalit H, Gallil T, Ben-Sasson SA (1996) Microsatellite spreading in the human genome. Evolutionary mechanisms and structural implications. Proc Natl Acad Sci USA 93:6470–6475

    Article  PubMed  CAS  Google Scholar 

  • Pantazidis A, Labrador M, Fontdevila A (1999) The retrotransposon Osvaldo from D. buzzatii displays all structural features of functional retrovirus. Mol Biol Evol 16:909–921

    PubMed  CAS  Google Scholar 

  • Piñol J, Francino O, Fontdevila A, Cabré O (1988) Rapid isolation of Drosophila high molecular weight DNA to obtain genomic libraries. Nucleic Acids Res 16:2736–2737

    PubMed  Google Scholar 

  • Priimaegi AF, Mizhrokhi LJ, Ilyin YV (1988) The Drosophila mobile element jockey belongs to LINEs and contains coding sequences homologous to some retroviral proteins. Gene 70:253–262

    Article  Google Scholar 

  • Ramsay L, Macaulay M, Cardle L, Morgante M, Ivanissevich S, Maestri E, Powell Waugh R (1999) Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J 17:415–425

    Article  PubMed  CAS  Google Scholar 

  • Rein A, Henderson LE, Levin JG (1998) Nucleic-acid-cahaperone activity of retroviral nucleocapsid proteins: significance for viral replication. Trends Biochem Sci 23:297–301

    Article  PubMed  CAS  Google Scholar 

  • Saigo K, Kugimiya W, Matsuo Y, Inouye S, Yoshioka K, Yuki S (1984) Identification of the coding sequence for a reverse transcriptase-like enzyme in a transposable genetic element in Drosophila melanogaster. Nature 312:659–661

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Schmidt ER (1992) A simplified and efficient protocol for non-radiactive in situ hybridisation to polytene chromosomes with a DIG.-labeled DNA probe. In: Non-radioactive in situ hybridisation application manual. Roche, pp 36–38

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Gaut BS, Thikonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    Article  PubMed  CAS  Google Scholar 

  • Tanda S, Mullor JL, Corces VG (1994) The Drosophila tom retrotransposon encodes an envelope protein. Mol Cell Biol 14:5392–5401

    PubMed  CAS  Google Scholar 

  • Temin HM (1981) Structure variation and synthesis of retrovirus long terminal repeats. Cell 27:1–3

    Article  PubMed  CAS  Google Scholar 

  • Vincent JP, Girdham CH, O´Farrell PH (1994) A cell-autonomous ubiquitous marker for the analysis of Drosophila genetic mosaics. Dev Biol 164:328–331

    Article  PubMed  CAS  Google Scholar 

  • Vogt VM (1997) Retroviral virions and genomes. In: Coffin J, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory press, New York

    Google Scholar 

  • Wasserman M (1982) Evolution of the repleta group. In: Ashburner M, Carlson HL, Thompson JN (eds) The genetics and biology of Drosophila. Academic, London, pp 62–139

    Google Scholar 

  • Whalen JH, Grigliatti TA (1998) Molecular characterization of a retrotransposon in Drosophila melanogaster, nomad, and its relationship to other retrovirus-like mobile elements. Mol Gen Genet 260:401–409

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362

    PubMed  CAS  Google Scholar 

  • Yuki S, Inouye S, Ishimaru S, Saigo K (1986) Nucleotide sequence characterization of a Drosophila retrotransposon, 412. Eur J Biochem 158:403–410

    Article  PubMed  CAS  Google Scholar 

  • Zelentsova H, Poluectova H, Mnjoian L, Lyozin G, Veleikodvorskaja V, Zhivotovsky L, Kidwell MG, Evgen’ev MB (1999) Distribution and evolution of mobile elements in the virilis species group of Drosophila. Chromosoma 108:443–456

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by grants BOS2000-0295-C02 and BOS2003-05904-C02 from Ministerio de Ciencia y Tecnología (MCYT) Spain and 2001SGR-00207 from the Generalitat de Catalunya to AF. We acknowledge C. Biémont and two anonymous reviewers for their helpful discussions and comments on the manuscript, and we thank L. Alarcón for providing us with DNA samples from different species of the buzzatii complex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. García Guerreiro.

Additional information

Communicated by G. Reuter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerreiro, M.P.G., Fontdevila, A. Molecular characterization and genomic distribution of Isis: a new retrotransposon of Drosophila buzzatii . Mol Genet Genomics 277, 83–95 (2007). https://doi.org/10.1007/s00438-006-0174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0174-0

Keywords

Navigation