Skip to main content
Log in

Genetic evidence for 18S rRNA binding and an Rps19p assembly function of yeast nucleolar protein Nep1p

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The nucleolar protein Nep1 and its human homologue were previously shown to be involved in the maturation of 18S rRNA and to interfere directly or indirectly with a methylation reaction. Here, we report that the loss-of-function mutation Δsnr57 and multicopy expression of the ribosomal 40S subunit protein 19 (Rps19p) can partially suppress the Saccharomyces cerevisiae Δnep1 growth defect. SnR57 mediates 2′-O-ribose-methylation of G1570 in the 18S rRNA. By performing a three-hybrid screen, we isolated several short RNA sequences with strong binding affinity to Nep1p. All isolated RNAs shared a six-nucleotide consensus motif C/UUCAAC. Furthermore, one of the isolated RNAs exactly corresponded to nucleotides 1553–1577 of the 18S rRNA, which includes G1570, the site of snR57-dependent 18S rRNA methylation. From protein–protein crosslink data and the cryo-EM map of the S. cerevisiae small ribosomal subunit, we suggest that Rps19p is localized in close vicinity to the Nep1p 18S rRNA binding site. Our results suggest that Nep1p binds adjacent to helix 47 of the 18S rRNA and possibly supports the association of Rps19p to pre-ribosomal particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905–920

    Article  PubMed  CAS  Google Scholar 

  • Bassler J, et al (2001) Identification of a 60S preribosomal particle that is closely linked to nuclear export. Mol Cell 8:517–529

    Article  PubMed  CAS  Google Scholar 

  • Baudin-Baillieu A, Tollervey D, Cullin C, Lacroute F (1997) Functional analysis of Rrp7p, an essential yeast protein involved in pre-rRNA processing and ribosome assembly. Mol Cell Biol 17:5023–5032

    PubMed  CAS  Google Scholar 

  • Bonnerot C, Pintard L, Lutfalla G (2003) Functional redundancy of Spb1p and a snR52-dependent mechanism for the 2′-O-ribose methylation of a conserved rRNA position in yeast. Mol Cell 12:1309–1315

    Article  PubMed  CAS  Google Scholar 

  • Brodersen DE, Clemons WM Jr, Carter AP, Wimberly BT, Ramakrishnan V (2002) Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA. J Mol Biol 316:725–768

    Article  PubMed  CAS  Google Scholar 

  • Burns N, et al (1994) Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev 8:1087–1105

    Article  PubMed  CAS  Google Scholar 

  • Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P (1992) Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122

    Article  PubMed  CAS  Google Scholar 

  • Davis L, Engebrecht J (1998) Yeast dom34 mutants are defective in multiple developmental pathways and exhibit decreased levels of polyribosomes. Genetics 149:45–56

    PubMed  CAS  Google Scholar 

  • Decatur WA, Fournier MJ (2002) rRNA modifications and ribosome function. Trends Biochem Sci 27:344–351

    Article  PubMed  CAS  Google Scholar 

  • Draptchinskaia N, et al (1999) The gene encoding ribosomal protein S19 is mutated in Diamond–Blackfan anaemia. Nat Genet 21:169–175

    Article  PubMed  CAS  Google Scholar 

  • Entian K-D, Kötter P (1998) Yeast mutant and plasmid collections. In: Brown AJP, Tuite MF (eds) Yeast gene analysis. Academic, San Diego, pp. 431–449

    Chapter  Google Scholar 

  • Eschrich D, Buchhaupt M, Kötter P, Entian KD (2002) Nep1p (Emg1p), a novel protein conserved in eukaryotes and archaea, is involved in ribosome biogenesis. Curr Genet 40:326–338

    Article  PubMed  CAS  Google Scholar 

  • Fromont-Racine M, Senger B, Saveanu C, Fasiolo F (2003) Ribosome assembly in eukaryotes. Gene 313:17–42

    Article  PubMed  CAS  Google Scholar 

  • Grandi P, et al (2002) 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol Cell 10:105–115

    Article  PubMed  CAS  Google Scholar 

  • Guarente L (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol 101:181–191

    Article  PubMed  CAS  Google Scholar 

  • Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524

    Article  PubMed  Google Scholar 

  • Itzhaki RF, Gill DM (1964) A micro-biuret method for estimating proteins. Anal Biochem 9:401–410

    Article  PubMed  CAS  Google Scholar 

  • Jakovljevic J, et al (2004) The carboxy-terminal extension of yeast ribosomal protein S14 is necessary for maturation of 43S preribosomes. Mol Cell 14:331–342

    Article  PubMed  CAS  Google Scholar 

  • James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436

    PubMed  CAS  Google Scholar 

  • Klein DJ, Moore PB, Steitz TA (2004) The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. J Mol Biol 340:141–177

    Article  PubMed  CAS  Google Scholar 

  • Lafontaine DL, Bousquet-Antonelli C, Henry Y, Caizergues-Ferrer M, Tollervey D (1998) The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev 12:527–537

    Article  PubMed  CAS  Google Scholar 

  • Liu PC, Thiele DJ (2001) Novel stress-responsive genes EMG1 and NOP14 encode conserved, interacting proteins required for 40S ribosome biogenesis. Mol Biol Cell 12:3644–3657

    PubMed  CAS  Google Scholar 

  • Loar JW, et al (2004) Genetic and biochemical interactions among Yar1, Ltv1 and RpS3 define novel links between environmental stress and ribosome biogenesis in Saccharomyces cerevisiae. Genetics 168:1877–1889

    Article  PubMed  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1999) A computational screen for methylation guide snoRNAs in yeast. Science 283:1168–1171

    Article  PubMed  CAS  Google Scholar 

  • Moritz M, Paulovich AG, Tsay YF, Woolford JL Jr (1990) Depletion of yeast ribosomal proteins L16 or rp59 disrupts ribosome assembly. J Cell Biol 111:2261–2274

    Article  PubMed  CAS  Google Scholar 

  • Noon KR, Bruenger E, McCloskey JA (1998) Posttranscriptional modifications in 16S and 23S rRNAs of the archaeal hyperthermophile Sulfolobus solfataricus. J Bacteriol 180:2883–2888

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch FF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Scheer U, Hock R (1999) Structure and function of the nucleolus. Curr Opin Cell Biol 11:385–390

    Article  PubMed  CAS  Google Scholar 

  • Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16:339–346

    Article  PubMed  CAS  Google Scholar 

  • Schlünzen F, et al (2000) Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102:615–623

    Article  PubMed  Google Scholar 

  • SenGupta DJ, Zhang B, Kraemer B, Pochart P, Fields S, Wickens M (1996) A three-hybrid system to detect RNA–protein interactions in vivo. Proc Natl Acad Sci USA 93:8496–8501

    Article  PubMed  CAS  Google Scholar 

  • SenGupta DJ, Wickens M, Fields S (1999) Identification of RNAs that bind to a specific protein using the yeast three-hybrid system. RNA 5:596–601

    Article  PubMed  CAS  Google Scholar 

  • Spahn CM, et al (2001) Structure of the 80S ribosome from Saccharomyces cerevisiae—tRNA-ribosome and subunit–subunit interactions. Cell 107:373–386

    Article  PubMed  CAS  Google Scholar 

  • Tabb AL, et al (2001) Genes encoding ribosomal proteins Rps0A/B of Saccharomyces cerevisiae interact with TOM1 mutants defective in ribosome synthesis. Genetics 157:1107–1116

    PubMed  CAS  Google Scholar 

  • Terao K, Uchiumi T, Kobayashi Y, Ogata K (1980) Identification of neighbouring protein pairs in the rat liver 40-S ribosomal subunits cross-linked with dimethyl suberimidate. Biochim Biophys Acta 621:72–82

    PubMed  CAS  Google Scholar 

  • Tolan DR, Traut RR (1981) Protein topography of the 40 S ribosomal subunit from rabbit reticulocytes shown by cross-linking with 2-iminothiolane. J Biol Chem 256:10129–10136

    PubMed  CAS  Google Scholar 

  • Tollervey D, Lehtonen H, Jansen R, Kern H, Hurt EC (1993) Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72:443–457

    Article  PubMed  CAS  Google Scholar 

  • Uchiumi T, Terao K, Ogata K (1981) Identification of neighboring protein pairs cross-linked with dimethyl 3,3′-dithiobispropionimidate in rat liver 40S ribosomal subunits. J Biochem (Tokyo) 90:185–193

    CAS  Google Scholar 

  • Venema J, Tollervey D (1995) Processing of pre-ribosomal RNA in Saccharomyces cerevisiae. Yeast 11:1629–1650

    Article  PubMed  CAS  Google Scholar 

  • Wimberly BT, et al (2000) Structure of the 30S ribosomal subunit. Nature 407:327–339

    Article  PubMed  CAS  Google Scholar 

  • Yeh YC, Traut RR, Lee JC (1986) Protein topography of the 40 S ribosomal subunit from Saccharomyces cerevisiae as shown by chemical cross-linking. J Biol Chem 261:14148–14153

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 579, Project B3. We thank M. Wickens and S. Fields for yeast three-hybrid reagents and the hybrid RNA expression library and M. Snyder for the mTn3-lacZ/LEU2 library and plasmid pRSQ2-URA3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Dieter Entian.

Additional information

Communicated by S. Hohmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchhaupt, M., Meyer, B., Kötter, P. et al. Genetic evidence for 18S rRNA binding and an Rps19p assembly function of yeast nucleolar protein Nep1p. Mol Genet Genomics 276, 273–284 (2006). https://doi.org/10.1007/s00438-006-0132-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0132-x

Keywords

Navigation