Skip to main content
Log in

Transcript levels in plant mitochondria show a tight homeostasis during day and night

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

In plants the physiological and biochemical demands on each cell vary greatly between day and night, mostly due to the differing output of photosynthesis. Chloroplasts, the organelles of photosynthesis, are biochemically closely linked to the other energy generating organelles, the mitochondria. We have now investigated whether gene expression in plant mitochondria is influenced by these daily physiological variations. Transcript synthesis in these organelles cycles in a diurnal rhythm, while steady state transcript levels do not vary between light and dark phases and are stable throughout the diurnal (as well as the circadian) time course. This finding suggests that available steady state transcript levels in plant mitochondria are sufficient to provide the required biochemical capacities also at times of peak respiratory and physiological demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bailey-Serres J, Hanson DK, Fox TD, Leaver CJ (1986) Mitochondrial genome rearrangement leads to extension and relocation of the cytochrome c oxidase subunit I gene in sorghum. Cell 47:567–576

    Article  PubMed  CAS  Google Scholar 

  • Bläsing OE, Gibon Y, Günther M, Höhne M, Morcuende R, Osuna D, Thimm O, Usadel B, Scheible WR, Stitt M (2005) Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell 17:3257–3281

    Article  PubMed  CAS  Google Scholar 

  • Deng XW, Gruissem W (1987) Control of plastid gene expression during development: the limited role of transcriptional regulation. Cell 49:379–387

    Article  PubMed  CAS  Google Scholar 

  • Dessi P, Whelan J (1997) Temporal regulation of in vitro import of precursor proteins into tobacco mitochondria. FEBS Lett 415:173–178

    Article  PubMed  CAS  Google Scholar 

  • Doyle MR, Davis SJ, Bastow RM, McWatters HG, Kozma-Bognar L, Nagy F, Millar AJ, Amasino RM (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419:74–77

    Article  PubMed  CAS  Google Scholar 

  • Dutilleul C, Driscoll S, Cornic G, de Paepe R, Foyer CH, Noctor G (2003a) Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients. Plant Physiol 131:264–275

    Article  CAS  Google Scholar 

  • Dutilleul C, Garnier M, Noctor G, Mathieu C, Chétrit P, Foyer CH, de Paepe R (2003b) Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signalling and diurnal regulation. Plant Cell 15:1212–1226

    Article  CAS  Google Scholar 

  • Eberhard S, Drapier D, Wollman FA (2002) Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. Plant J 31:149–160

    Article  PubMed  CAS  Google Scholar 

  • Escobar MA, Franklin KA, Svensson AS, Salter MG, Whitelam GC, Rasmusson AG (2004) Light regulation of the Arabidopsis respiratory chain. Multiple discrete photoreceptor responses contribute to induction of type II NAD(P)H dehydrogenase genes. Plant Physiol 136:2710–2721

    Article  PubMed  CAS  Google Scholar 

  • Gardeström P, Igamberdiev AU, Raghavendra AS (2002) Mitochondrial functions in the light and significance to carbon-nitrogen interactions. In: Foyer CH, Noctor G (eds) Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Kluwer Academic Publishers, Nijmwegen pp 151–172

    Google Scholar 

  • Giegé P, Hoffmann M, Binder S, Brennicke A (2000) RNA degradation buffers asymmetries of transcription in Arabidopsis mitochondria. EMBO Rep 1:164–170

    Article  PubMed  Google Scholar 

  • Giegé P, Sweetlove LJ, Cognat V, Leaver CJ (2005) Coordination of nuclear and mitochondrial genome expression during mitochondrial biogenesis in Arabidopsis. Plant Cell 17:1497–1512

    Article  PubMed  CAS  Google Scholar 

  • Hoefnagel MHN, Atkin OK, Wiskich JT (1998) Interdependence between chloroplasts and mitochondria in the light and the dark. Biochim Biophys Acta 1366:235–255

    Article  CAS  Google Scholar 

  • Klaff P, Gruissem W (1991) Changes in chloroplast mRNA stability during leaf development. Plant Cell 3:517–529

    Article  PubMed  CAS  Google Scholar 

  • Krömer S (1995) Respiration during photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 46:45–70

    Article  Google Scholar 

  • Kuhn J, Tengler U, Binder S (2001) Transcript lifetime is balanced between stabilizing stem-loop structures and degradation-promoting polyadenylation in plant mitochondria. Mol Cell Biol 2:731–742

    Article  Google Scholar 

  • Legen J, Kemp S, Krause K, Profanter B, Herrmann RG, Maier RW (2002) Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP-deficient transcription machineries. Plant J 31:171–188

    Article  PubMed  CAS  Google Scholar 

  • Logan DC, Millar AH, Sweetlove LJ, Hill SA, Leaver CJ (2001) Mitochondrial biogenesis during germination in maize embryos. Plant Physiol 125:662–672

    Article  PubMed  CAS  Google Scholar 

  • Makaroff CA, Palmer JD (1988) Mitochondrial DNA rearrangements and transcriptional alterations in the male-sterile cytoplasm of Ogura radish. Mol Cell Biol 8:1474–1480

    PubMed  CAS  Google Scholar 

  • McClung CR, Hsu M, Painter JE, Gagne JM, Karlsberg SD, Salomé PA (2000) Integrated temporal regulation of the photorespiratory pathway. Circadian regulation of two Arabidopsis genes encoding serine hydroxymethyltransferase. Plant Physiol 123:381–391

    Article  PubMed  CAS  Google Scholar 

  • Michalecka AM, Svensson AS, Johansson FI, Agius SC, Johanson U, Brennicke A, Binder S, Rasmusson AG (2003) Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origins and show distinct responses to light. Plant Physiol 133:642–652

    Article  PubMed  CAS  Google Scholar 

  • Monéger F, Smart CJ, Leaver CJ (1994) Nuclear restoration of cytoplasmic male sterility in sunflower is associated with the tissue-specific regulation of a novel mitochondrial gene. EMBO J 13:8–17

    PubMed  Google Scholar 

  • Raghavendra AS, Padmasree K (2003) Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci 8:546–553

    Article  PubMed  CAS  Google Scholar 

  • Smart CJ, Moneger F, Leaver CJ (1994) Cell-specific regulation of gene expression in mitochondria during anther development in sunflower. Plant Cell 6:811–825

    Article  PubMed  CAS  Google Scholar 

  • Svensson AS, Rasmusson AG (2001) Light-dependent gene expression for proteins in the respiratory chain of potato leaves. Plant J 28:73–82

    Article  PubMed  CAS  Google Scholar 

  • Unseld M, Marienfeld JR., Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15:57–61

    Article  PubMed  CAS  Google Scholar 

  • Wise RP, Pring DR (2002) Nuclear mediated mitochondrial male-fertility in higher plants: light at the end of the tunnel? Proc Natl Acad Sci USA 99:10240–10242

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Legen and R. G. Herrmann at the Department Biologie I of the Universität München for their kind support with the macroarrays and to D. Gagliardi and T. Börner for their very constructive discussions. This work was supported by post-doctoral fellowships from the Humboldt-Foundation (S.O.) and the Japanese Society for the Promotion of Science (S.O.), and by a research grant from the Deutsche Forschungsgemeinschaft (S.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachiko Okada.

Additional information

Communicated by R. Hagemann

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, S., Brennicke, A. Transcript levels in plant mitochondria show a tight homeostasis during day and night. Mol Genet Genomics 276, 71–78 (2006). https://doi.org/10.1007/s00438-006-0119-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0119-7

Keywords

Navigation