Skip to main content

Advertisement

Log in

Global transcriptional analysis of Methanosarcina mazei strain Gö1 under different nitrogen availabilities

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Certain archaeal species can fix molecular nitrogen under nitrogen limiting conditions although little is known about this process at either the genetic or molecular level. To address this on a genome-wide scale, transcriptional analysis was performed on the model methanogen Methanosarcina mazei strain Gö1 using DNA-microarrays. The genomic expression patterns for cells grown under nitrogen fixing conditions versus nitrogen sufficiency (10 mM ammonium) revealed that approximately 5% of all genes are differentially expressed. Besides a small set of genes previously known to be up-regulated under nitrogen limitation, 14 additional genes involved in nitrogen metabolism were identified plus 10 genes encoding potential transcriptional regulators, 13 genes involved in carbon metabolism, 3 genes in general stress response, 8 putative transporter genes, and an additional 21 genes with unknown function. Quantitative reverse transcriptase PCR experiments confirmed the differential expression of a subset of these genes. Promoter analysis revealed a palindromic DNA motif centered nearby the transcriptional start point for several genes up-regulated under nitrogen limitation. A bioinformatics study demonstrated the presence of this motif in the up-stream region of 52 genes genome-wide, the majority of which showed nitrogen dependent differential transcription. We therefore hypothesize that this DNA element is involved in nitrogen control in M. mazei where it may act as a binding site for a regulatory protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguena M, Yagil E, Spira B (2002) Transcriptional analysis of the pst operon of Escherichia coli. Mol Genet Genomics 268:518–524

    Article  PubMed  CAS  Google Scholar 

  • Beckers G, Nolden L, Burkovski A (2001) Glutamate synthase of Corynebacterium glutamicum is not essential for glutamate synthesis and is regulated by the nitrogen status. Microbiology 147:2961–2970

    PubMed  CAS  Google Scholar 

  • Brenchley JE, Baker CA, Patil LG (1975) Regulation of the ammonia assimilatory enzymes in Salmonella typhimurium. J Bacteriol 124:182–189

    PubMed  CAS  Google Scholar 

  • Burgess BK, Lowe DJ (1996) Mechanism of molybdenum nitrogenase. Chem Rev 96:2983–3012

    Article  PubMed  CAS  Google Scholar 

  • Chien Y, Helmann JD, Zinder SH (1998) Interactions between the promoter regions of nitrogenase structural genes (nifHDK2) and DNA-binding proteins from N2- and ammonium-grown cells of the archaeon Methanosarcina barkeri 227. J Bacteriol 180:2723–2728

    PubMed  CAS  Google Scholar 

  • Cohen-Kupiec R, Blank C, Leigh JA (1997) Transcriptional regulation in Archaea: in vivo demonstration of a repressor binding site in a methanogen. Proc Natl Acad Sci USA 94:1316–1320

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Kupiec R, Marx CJ, Leigh JA (1999) Function and regulation of glnA in the methanogenic archaeon Methanococcus maripaludis. J Bacteriol 181:256–261

    PubMed  CAS  Google Scholar 

  • De Pina K, Desjardin V, Mandrand-Berthelot MA, Giordano G, Wu LF (1999) Isolation and characterization of the nikR gene encoding a nickel-responsive regulator in Escherichia coli. J Bacteriol 181:670–674

    PubMed  Google Scholar 

  • Deppenmeier U (2002) The unique biochemistry of methanogenesis. Prog Nucl Acid Res Mol Biol 71:223–283

    Article  CAS  Google Scholar 

  • Deppenmeier U, Blaut M, Mahlmann A, Gottschalk G (1990) Reduced coenzyme F420: heterodisulfide oxidoreductase, a proton-translocating redox system in methanogenic bacteria. Proc Natl Acad Sci USA 87:9449–9453

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier U et al (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4:453–461

    PubMed  CAS  Google Scholar 

  • Deppenmeier U, Lienard T, Gottschalk G (1999) Novel reactions involved in energy conservation by methanogenic archaea. FEBS Lett 457:291–297

    Article  PubMed  CAS  Google Scholar 

  • Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631

    Article  PubMed  CAS  Google Scholar 

  • Ehlers C, Grabbe R, Veit K, Schmitz RA (2002a) Characterization of GlnK1 from Methanosarcina mazei strain Go1: complementation of an Escherichia coli glnK mutant strain by GlnK1. J Bacteriol 184:1028–1040

    Article  CAS  Google Scholar 

  • Ehlers C, Veit K, Gottschalk G, Schmitz RA (2002b) Functional organization of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1. Archaea 1:143–150

    Article  CAS  Google Scholar 

  • Ehlers C, Weidenbach K, Veit K, Deppenmeier U, Metcalf WW, Schmitz RA (2005a) Development of genetic methods and construction of a chromosomal glnK1 mutant in Methanosarcina mazei strain Gö1. Mol Genet Genomics 273:290–298

    Article  CAS  Google Scholar 

  • Ehlers C, Weidenbach K, Veit K, Forchhammer K, Schmitz RA (2005b) Unique mechanistic features of post-translational regulation of glutamine synthetase activity in Methanosarcina mazei strain Gö1 in response to nitrogen availability. Mol Microbiol 55:1841–1854

    Article  CAS  Google Scholar 

  • Ferry JG (1999) Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol Rev 23:13–38

    Article  PubMed  CAS  Google Scholar 

  • Galagan JE et al (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542

    Article  PubMed  CAS  Google Scholar 

  • Hausinger RP (1987) Nickel utilization by microorganisms. Microbiol Rev 51:22–42

    PubMed  CAS  Google Scholar 

  • Hausner W, Frey G, Thomm M (1991) Control regions of an archaeal gene. A TATA box and an initiator element promote cell-free transcription of the tRNA(Val) gene of Methanococcus vannielii. J Mol Biol 222:495–508

    Article  PubMed  CAS  Google Scholar 

  • Hovey R et al (2005) DNA microarray analysis of Methanosarcina mazei Gö1 reveals adaptation to different methanogenic substrates. Mol Genet Genomics 273(3):225–239

    Article  PubMed  CAS  Google Scholar 

  • Kessler PS, Blank C, Leigh JA (1998) The nif gene operon of the methanogenic archaeon Methanococcus maripaludis. J Bacteriol 180:1504–1511

    PubMed  CAS  Google Scholar 

  • Kessler PS, Leigh JA (1999) Genetics of nitrogen regulation in Methanococcus maripaludis. Genetics 152:1343–1351

    PubMed  CAS  Google Scholar 

  • Langer D, Hain J, Thuriaux P, Zillig W (1995) Transcription in archaea: similarity to that in eucarya. Proc Natl Acad Sci USA 92:5768–5772

    Article  PubMed  CAS  Google Scholar 

  • Leigh JA (1999) Transcriptional regulation in Archaea. Curr Opin Microbiol 2:131–134

    Article  PubMed  CAS  Google Scholar 

  • Leigh JA (2000) Nitrogen fixation in methanogens: the archaeal perspective. Curr Issues Mol Biol 2:125–131

    PubMed  CAS  Google Scholar 

  • Lie TJ, Leigh JA (2003) A novel repressor of nif and glnA expression in the methanogenic archaeon Methanococcus maripaludis. Mol Microbiol 47:235–246

    Article  PubMed  CAS  Google Scholar 

  • Lie TJ, Wood GE, Leigh JA (2005) Regulation of nif expression in Methanococcus maripaludis: roles of the euryarchaeal repressor NrpR, 2-oxoglutarate, and two operators. J Biol Chem 280:5236–5241

    Article  PubMed  CAS  Google Scholar 

  • Meers JL, Tempest DW, Brown CM (1970) Glutamine(amide): 2-oxoglutarate amino transferase oxido-reductase (NADP); an enzyme involved in the synthesis of glutamate by some bacteria. J Gen Microbiol 64:187–194

    PubMed  CAS  Google Scholar 

  • Münch R et al. (2005) Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes. Bioinformatics 21:4187–4189

    Article  PubMed  CAS  Google Scholar 

  • Ouhammouch M (2004) Transcriptional regulation in Archaea. Curr Opin Genet Dev 14:133–138

    Article  PubMed  CAS  Google Scholar 

  • Palmer JR, Daniels CJ (1995) In vivo definition of an archaeal promoter. J Bacteriol 177:1844–1849

    PubMed  CAS  Google Scholar 

  • Qureshi SA, Jackson SP (1998) Sequence-specific DNA binding by the S. shibatae TFIIB homolog, TFB, and its effect on promoter strength. Mol Cell 1:389–400

    Article  PubMed  CAS  Google Scholar 

  • Rao NN, Torriani A (1990) Molecular aspects of phosphate transport in Escherichia coli. Mol Microbiol 4:1083–1090

    Article  PubMed  Google Scholar 

  • Reiter WD, Hudepohl U, Zillig W (1990) Mutational analysis of an archaebacterial promoter: essential role of a TATA box for transcription efficiency and start-site selection in vitro. Proc Natl Acad Sci USA 87:9509–9513

    Article  PubMed  CAS  Google Scholar 

  • Riba L, Becerril B, Servin-Gonzalez L, Valle F, Bolivar F (1988) Identification of a functional promoter for the Escherichia coli gdhA gene and its regulation. Gene 71:233–246

    Article  PubMed  CAS  Google Scholar 

  • Rogers JE, Whiteman WB (eds) (1991) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides and halomethanes. ASM, Washington DC

  • Saier MH, Ramseier TM, Reizer J (1996) Regulation of carbon utilization In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM, Washington DC, pp 1326–1343

    Google Scholar 

  • Silberbach M et al (2005a) DNA microarray analysis of the nitrogen starvation response of Corynebacterium glutamicum. J Biotechnol 119:357–367

    Article  CAS  Google Scholar 

  • Silberbach M et al (2005b) Adaptation of Corynebacterium glutamicum to ammonium limitation: a global analysis using transcriptome and proteome techniques. Appl Environ Microbiol 71:2391–2402

    Article  CAS  Google Scholar 

  • Smith MW, Neidhardt FC (1983a) Proteins induced by aerobiosis in Escherichia coli. J Bacteriol 154:344–350

    CAS  Google Scholar 

  • Smith MW, Neidhardt FC (1983b) Proteins induced by anaerobiosis in Escherichia coli. J Bacteriol 154:336–343

    CAS  Google Scholar 

  • Talaat AM, Howard ST, Hale Wt, Lyons R, Garner H, Johnston SA (2002) Genomic DNA standards for gene expression profiling in Mycobacterium tuberculosis. Nucleic Acids Res 30:e104

    Article  PubMed  Google Scholar 

  • Tao H, Bausch C, Richmond C, Blattner FR, Conway T (1999) Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J Bacteriol 181:6425–6440

    PubMed  CAS  Google Scholar 

  • Terlesky KC, Nelson MJ, Ferry JG (1986) Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing corrinoid and nickel from acetate-grown Methanosarcina thermophila. J Bacteriol 168:1053–1058

    PubMed  CAS  Google Scholar 

  • Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiology 144:2377–2406

    Article  PubMed  CAS  Google Scholar 

  • Thomm M (2000) Die Transkriptionsmachinerie der Archaea. Biospektrum 3:179–185

    Google Scholar 

  • Veit K, Ehlers C, Schmitz RA (2005) Effects of nitrogen and carbon sources on transcription of soluble methyltransferases in Methanosarcina mazei strain Gö1. J Bacteriol 187:6147–6154

    Article  PubMed  CAS  Google Scholar 

  • Wu LF, Navarro C, de Pina K, Quenard M, Mandrand MA (1994) Antagonistic effect of nickel on the fermentative growth of Escherichia coli K-12 and comparison of nickel and cobalt toxicity on the aerobic and anaerobic growth. Environ Health Perspect 102:297–300

    Article  PubMed  CAS  Google Scholar 

  • Zimmer DP et al (2000) Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci USA 97:14674–14679

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Gerhard Gottschalk for continuous support and helpful discussions. This work was supported by the Deutsche Forschungsgemeinschaft (SCHM1052/6-1 and 6-2) to R. Schmitz and (DE488/7-2) to U. Deppenmeier and by a U.S. Department of Energy grant DE-FG03-86ER13498 to R. P. Gunsalus. C. Ehlers was supported by a Ph.D. fellowship from the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth A. Schmitz.

Additional information

Communicated by G. Klug

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veit, K., Ehlers, C., Ehrenreich, A. et al. Global transcriptional analysis of Methanosarcina mazei strain Gö1 under different nitrogen availabilities. Mol Genet Genomics 276, 41–55 (2006). https://doi.org/10.1007/s00438-006-0117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0117-9

Keywords

Navigation