Skip to main content
Log in

Segmental distribution of genes harboring a CpG island-like region on rice chromosomes

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

In plant genomes, there exist discrete regions rich in CpG dinucleotides, namely CpG clusters. In rice, most of these CpG clusters are associated with genes. Rice genes are grouped into one of the five classes according to the position of an associated CpG cluster. Among them, class 1 genes, which harbor a CpG cluster at the 5′-terminus, share similarities with human genes having CpG islands. In the present study, by analyzing plant genome sequence data, primarily from rice, we investigated the chromosomal distribution of genes of each class, mainly class 1 genes. Class 1 genes were not uniformly distributed across the rice genome, but were clustered into discrete chromosomal segments. EST-based analysis of the distribution of expressed genes indicates that this segmental distribution of class 1 genes caused a preferential distribution of expressed genes within class 1 gene-rich segments. We then compared the methylation status of genes of each class to examine the possibility that differential DNA methylation, if any, is relevant to the observed differential expression level of genes inside and outside the class 1 segments. The difference in the methylation level between these genes was revealed to be fairly small, which does not support the above-mentioned possibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antequera F, Bird AP (1988) Unmethylated CpG islands associated with genes in higher plant DNA. EMBO J 7:2295–2299

    PubMed  CAS  Google Scholar 

  • Ashikawa I (2001) Gene-associated CpG islands in plants as revealed by analysis of genomic sequences. Plant J 26:617–625

    Article  PubMed  CAS  Google Scholar 

  • Ashikawa I (2002) Gene-associated CpG islands and the expression pattern of genes in rice. DNA Res 9:131–134

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Chrick K, Springer PS, Brown WE, SanMiguel P (1994) Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome 37:565–576

    Article  PubMed  CAS  Google Scholar 

  • Bird AP (1987) CpG islands as gene markers in vertebrate nucleus. Trends Genet 3:342–347

    Article  CAS  Google Scholar 

  • Bird AP (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  PubMed  CAS  Google Scholar 

  • Bird AP, Taggart M, Frommer M, Miller OJ, Macleod D (1985) A fraction of the mouse genome that is derived from islands of nonmethylated CpG-rich DNA. Cell 40:91–99

    Article  PubMed  CAS  Google Scholar 

  • Cross SH, Bird AP (1995) CpG islands and genes. Curr Opin Genet Dev 5:309–314

    Article  PubMed  CAS  Google Scholar 

  • Dunham I, Shimizu N, Roe BA et al. (1999) The DNA sequence of human chromosome 22. Nature 402:489–495

    Article  PubMed  CAS  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (2000) DNA methylation, a key regulator of plant development and other processes. Curr Opin Genet Dev 10:217–223

    Article  PubMed  CAS  Google Scholar 

  • Florea L, Hartzell G, Zhang Z, Rubin GM, Miller W (1998) A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res 8:967–974

    PubMed  CAS  Google Scholar 

  • Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  PubMed  CAS  Google Scholar 

  • Gardiner-Garden M, Frommer M (1992) Significant CpG-rich regions in angiosperm genes. J Mol Evol 34:231–245

    Article  CAS  Google Scholar 

  • Gruenbaum Y, Naveh-Many T, Ceder H, Razin A (1981) Sequence specificity of methylation in higher plant DNA. Nature 292:860–862

    Article  PubMed  CAS  Google Scholar 

  • Hashimshony T, Zhang J, Keshet I, Bustin M, Ceder H (2003) The role of DNA methylation in setting up chromatin structure during development. Nat Genet 34:187–192

    Article  PubMed  CAS  Google Scholar 

  • Hattori M, Fujiyama A, Taylor TD et al (2000) The DNA sequence of human chromosome 21. Nature 405:311–319

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen SE, Meyerowitz EM (1997) Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277:1100–1103

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H et al (2003) Collection, mapping, and annotation of over 28000 cDNA clones from japonica rice. Science 301:376–379

    Article  PubMed  Google Scholar 

  • Langdale JA, Taylor WC, Nelson T (1991) Cell-specific accumulation of maize phosphoenolpyruvate carboxylase is correlated with demethylation at a specific site >3 kb upstream of the gene. Mol Gen Genet 225:49–55

    Article  PubMed  CAS  Google Scholar 

  • Larsen F, Gundersen G, Lopez R, Prydz H (1992) CpG islands as gene markers in the human genome. Genomics 13:1095–1107

    Article  PubMed  CAS  Google Scholar 

  • Messeguer R, Ganal MW, Steffens JC, Tanksley SD (1991) Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant Mol Biol 16:753–770

    Article  PubMed  CAS  Google Scholar 

  • Moore G, Abbo S, Cheung W et al (1993) Key features of cereal genome organization as revealed by the use of cytosine methylation-sensitive restriction endonucleases. Genomics 15:472–482

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Panstruga R, Buschges R, Piffanelli P, Schulze-Lefert P (1998) A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Res 26:1056–1062

    Article  PubMed  CAS  Google Scholar 

  • Rabinowicz PD, Palmer LE, May BP, Hemann MT, Lowe SW, McCombie WR, Martienssen RA (2003) Genes and transposons are differentially methylated in plants, but not in mammals. Genome Res 13:2658–2664

    Article  PubMed  CAS  Google Scholar 

  • Rombauts S, Florquin K, Lescot M, Marchal K, Rouze P, Van de Peer Y (2003) Computational approaches to identify promoters and cis-regulatory elements in plant genomes. Plant Physiol 132:1162–1176

    Article  PubMed  CAS  Google Scholar 

  • Sakata K, Nagamura Y, Numa H, Antonio BA, Nagasaki H, Idonuma A, Watanabe W, Shimizu Y, Horiuchi I, Matsumoto T et al (2002) RiceGAAS: an automated annotation system and database for rice genome sequence. Nucleic Acids Res 30:98–102

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, Sakurai T, Nakajima M, Enju A, Akiyama K, Oono Y et al (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296:141–145

    Article  PubMed  Google Scholar 

  • Sorensen MB, Muller M, Skerritt J, Simpson D (1996) Hordein promoter methylation and transcriptional activity in wild-type and mutant barley endosperm. Mol Gen Genet 250:750–760

    Article  PubMed  CAS  Google Scholar 

  • Turcotte K, Srinivasan S, Bureau T (2001) Survey of transposable elements from rice genomic sequences. Plant J 25:169–179

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Maehara T, Shimokawa T, Yamamoto S, Harada C, Takazaki Y, Ono N, Mukai Y, Koike K, Yazaki J et al (2002) A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell 14:525–535

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Higo for his encouragement during this work. This study was supported by a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Rice Genome Project SY-1101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ashikawa.

Additional information

Communicated by R. McCombie

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashikawa, I., Numa, H. & Sakata, K. Segmental distribution of genes harboring a CpG island-like region on rice chromosomes. Mol Genet Genomics 275, 18–25 (2006). https://doi.org/10.1007/s00438-005-0060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-005-0060-1

Keywords

Navigation