Skip to main content
Log in

Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The complete sequence of the mitochondrial DNA of the opportunistic yeast pathogen Candida parapsilosis was determined. The mitochondrial genome is represented by linear DNA molecules terminating with tandem repeats of a 738-bp unit. The number of repeats varies, thus generating a population of linear DNA molecules that are heterogeneous in size. The length of the shortest molecules is 30,922 bp, whereas the longer molecules have expanded terminal tandem arrays (n×738 bp). The mitochondrial genome is highly compact, with less than 8% of the sequence corresponding to non-coding intergenic spacers. In silico analysis predicted genes encoding fourteen protein subunits of complexes of the respiratory chain and ATP synthase, rRNAs of the large and small subunits of the mitochondrial ribosome, and twenty-four transfer RNAs. These genes are organized into two transcription units. In addition, six intronic ORFs coding for homologues of RNA maturase, reverse transcriptase and DNA endonucleases were identified. In contrast to its overall molecular architecture, the coding sequences of the linear mitochondrial DNA of C. parapsilosis are highly similar to their counterparts in the circular mitochondrial genome of its close relative C. albicans. The complete sequence has implications for both mitochondrial DNA replication and the evolution of linear DNA genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    CAS  PubMed  Google Scholar 

  • Baldacci G, Cherif-Zahar B, Bernardi G (1984) The initiation of DNA replication in the mitochondrial genome of yeast. EMBO J 3:2115–2120

    CAS  PubMed  Google Scholar 

  • Bullerwell CE, Leigh J, Forget L, Lang BF (2003) A comparison of three fission yeast mitochondrial genomes. Nucleic Acids Res 31:759–768

    Article  CAS  PubMed  Google Scholar 

  • Camougrand N, Velours G, Guerin M (1986) Resistance of Candida parapsilosis to drugs. Biol Cell 58:71–78

    CAS  PubMed  Google Scholar 

  • Camougrand N, Mila B, Velours G, Lazowska J, Guerin M (1988) Discrimination between different groups of Candida parapsilosis by mitochondrial DNA restriction analysis. Curr Genet 13:445–449

    CAS  PubMed  Google Scholar 

  • Casey JW, Hsu HJ, Rabinowitz M, Getz GS, Fukuhara H (1974) Transfer RNA genes in the mitochondrial DNA of cytoplasmic petite mutants of Saccharomyces cerevisiae. J Mol Biol 88:717–733

    CAS  PubMed  Google Scholar 

  • De Zamaroczy M, Baldacci G, Bernardi G (1979) Putative origins of replication in the mitochondrial genome of yeast. FEBS Lett 108:429–432

    Article  PubMed  Google Scholar 

  • Drissi R, Sor F, Nosek J, Fukuhara H (1994) Genes of the linear mitochondrial DNA of Williopsis mrakii: coding sequences for a maturase-like protein, a ribosomal protein VAR1 homologue, cytochrome oxidase subunit 2 and methionyl tRNA. Yeast 10:391–398

    CAS  PubMed  Google Scholar 

  • Fernet C, Claisse M, Clark-Walker GD (2003) The mitochondrial genome of Debaryomyces (Schwanniomyces) occidentalis encodes subunits of NADH dehydrogenase complex I. Mitochondrion 2:267–275

    Article  CAS  Google Scholar 

  • Foury F, Roganti T, Lecrenier N, Purnelle B (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440:325–331

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara H, Sor F, Drissi R, Dinouel N, Miyakawa I, Rousset S, Viola AM (1993) Linear mitochondrial DNAs of yeasts: frequency of occurrence and general features. Mol Cell Biol 13:2309–2314

    CAS  PubMed  Google Scholar 

  • Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514

    Article  CAS  PubMed  Google Scholar 

  • Guelin E, Guerin M, Velours J (1991) Isolation of the ATP synthase subunit 6 and sequence of the mitochondrial ATP6 gene of the yeast Candida parapsilosis. Eur J Biochem 197:105–111

    CAS  PubMed  Google Scholar 

  • Jacobs MA, Payne SR, Bendich AJ (1996) Moving pictures and pulsed-field gel electrophoresis show only linear mitochondrial DNA molecules from yeasts with linear-mapping and circular-mapping mitochondrial genomes. Curr Genet 30:3–11

    Article  CAS  PubMed  Google Scholar 

  • Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 101:7329–7334

    Article  CAS  PubMed  Google Scholar 

  • Kerscher S, Durstewitz G, Casaregola S, Gaillardin C, Brandt U (2001) The complete mitochondrial genome of Yarrowia lipolytica. Compar Funct Genomics 2:80–90

    Article  CAS  Google Scholar 

  • Koszul R, Malpertuy A, Frangeul L, Bouchier C, Wincker P, Thierry A, Duthoy S, Ferris S, Hennequin C, Dujon B (2003) The complete mitochondrial genome sequence of the pathogenic yeast Candida (Torulopsis) glabrata. FEBS Lett 534:39–48

    Article  CAS  PubMed  Google Scholar 

  • Kovac L, Lazowska J, Slonimski PP (1984) A yeast with linear molecules of mitochondrial DNA. Mol Gen Genet 197:420–424

    CAS  PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73:331–371

    Article  CAS  PubMed  Google Scholar 

  • Lang BF (1984) The mitochondrial genome of the fission yeast Schizosaccharomyces pombe: highly homologous introns are inserted at the same position of the otherwise less conserved cox1 genes in Schizosaccharomyces pombe and Aspergillus nidulans. EMBO J 3:2129–2136

    CAS  PubMed  Google Scholar 

  • Langkjaer RB, Casaregola S, Ussery DW, Gaillardin C, Piskur J (2003) Sequence analysis of three mitochondrial DNA molecules reveals interesting differences among Saccharomyces yeasts. Nucleic Acids Res 31:3081–3091

    Article  CAS  PubMed  Google Scholar 

  • Lobry JR (1996) Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13:660–665

    CAS  PubMed  Google Scholar 

  • Maleszka R (1994) The in vivo effects of ethidium bromide on mitochondrial and ribosomal DNA in Candida parapsilosis. Yeast 10:1203–1210

    CAS  PubMed  Google Scholar 

  • Morin GB, Cech TR (1988) Mitochondrial telomeres: surprising diversity of repeated telomeric DNA sequences among six species of Tetrahymena. Cell 52:367–374

    CAS  PubMed  Google Scholar 

  • Nagley P (1988) Eukaryote membrane genetics: the Fo sector of mitochondrial ATP synthase. Trends Genet 4:46–51

    Article  CAS  PubMed  Google Scholar 

  • Nelson MA, Macino G (1987) Structure and expression of the overlapping ND4L and ND5 genes of Neurospora crassa mitochondria. Mol Gen Genet 206:307–317

    CAS  PubMed  Google Scholar 

  • Nosek J, Fukuhara H (1994a) Mitochondrial transfer RNA genes of the yeast Candida parapsilosis. Gene 142:307–308

    Article  CAS  PubMed  Google Scholar 

  • Nosek J, Fukuhara H (1994b) NADH dehydrogenase subunit genes in the mitochondrial DNA of yeasts. J Bacteriol 176:5622–5630

    CAS  PubMed  Google Scholar 

  • Nosek J, Tomaska L (2002) Mitochondrial telomeres: alternative solutions to the end-replication problem. In: Krupp G, Parwaresch R (eds) Telomeres, telomerases and cancer. Kluwer Academic/Plenum Publishers, New York, p 396–417

  • Nosek J, Tomaska L (2003) Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy. Curr Genet 44:73–84

    Article  CAS  PubMed  Google Scholar 

  • Nosek J, Dinouel N, Kovac L, Fukuhara H (1995) Linear mitochondrial DNAs from yeasts: telomeres with large tandem repetitions. Mol Gen Genet 247:61–72

    CAS  PubMed  Google Scholar 

  • Nosek J, Tomaska L, Fukuhara H, Suyama Y, Kovac L (1998) Linear mitochondrial genomes: 30 years down the line. Trends Genet 14:184–188

    Article  CAS  PubMed  Google Scholar 

  • Nosek J, Tomaska L, Pagacova B, Fukuhara H (1999) Mitochondrial telomere-binding protein from Candida parapsilosis suggests an evolutionary adaptation of a nonspecific single-stranded DNA-binding protein. J Biol Chem 274:8850–8857

    Article  CAS  PubMed  Google Scholar 

  • Nosek J, Tomaska L, Rycovska A, Fukuhara H (2002) Mitochondrial telomeres as molecular markers for identification of the opportunistic yeast pathogen Candida parapsilosis. J Clin Microbiol 40:1283–1289

    Article  CAS  PubMed  Google Scholar 

  • Osinga KA, De Vries E, Van der Horst GT, Tabak HF (1984) Initiation of transcription in yeast mitochondria: analysis of origins of replication and of genes coding for a messenger RNA and a transfer RNA. Nucleic Acids Res 12:1889–1900

    CAS  PubMed  Google Scholar 

  • Paquin B, Laforest MJ, Lang BF (2000) Double-hairpin elements in the mitochondrial DNA of Allomyces: evidence for mobility. Mol Biol Evol 17:1760–1768

    CAS  PubMed  Google Scholar 

  • Petersen RF, Langkjaer RB, Hvidtfeldt J, Gartner J, Palmen W, Ussery DW, Piskur J (2002) Inheritance and organisation of the mitochondrial genome differ between two Saccharomyces yeasts. J Mol Biol 318:627–636

    Article  CAS  PubMed  Google Scholar 

  • Picardeau M, Lobry JR, Hinnebusch BJ (2000) Analyzing DNA strand compositional asymmetry to identify candidate replication origins of Borrelia burgdorferi linear and circular plasmids. Genome Res 10:1594–1604

    Article  CAS  PubMed  Google Scholar 

  • Rycovska A, Valach M, Tomaska L, Bolotin-Fukuhara M, Nosek J (2004) Linear versus circular mitochondrial genomes: Intraspecies variability of mitochondrial genome architecture in Candida parapsilosis. Microbiology-SGM 150:1571–1580

    Google Scholar 

  • Sekito T, Okamoto K, Kitano H, Yoshida K (1995) The complete mitochondrial DNA sequence of Hansenula wingei reveals new characteristics of yeast mitochondria. Curr Genet 28:39–53

    CAS  PubMed  Google Scholar 

  • Tian GL, Michel F, Macadre C, Slonimski PP, Lazowska J (1991) Incipient mitochondrial evolution in yeasts. II. The complete sequence of the gene coding for cytochrome b in Saccharomyces douglasii reveals the presence of both new and conserved introns and discloses major differences in the fixation of mutations in evolution. J Mol Biol 218:747–760

    CAS  PubMed  Google Scholar 

  • Tomaska L, Nosek J, Makhov AM, Pastorakova A, Griffith JD (2000) Extragenomic double-stranded DNA circles in yeast with linear mitochondrial genomes: potential involvement in telomere maintenance. Nucleic Acids Res 28:4479–4487

    Article  CAS  PubMed  Google Scholar 

  • Tomaska L, Makhov AM, Nosek J, Kucejova B, Griffith JD (2001) Electron microscopic analysis supports a dual role for the mitochondrial telomere-binding protein of Candida parapsilosis. J Mol Biol 305:61–69

    Article  CAS  PubMed  Google Scholar 

  • Tomaska L, Makhov AM, Griffith JD, Nosek J (2002) t-loops in yeast mitochondria. Mitochondrion 1:455–459

    Article  CAS  Google Scholar 

  • Tomaska L, McEachern MA, Nosek J (2004) Alternatives to telomerase: keeping linear chromosomes via telomeric circles. FEBS Lett 567:142–146

    PubMed  Google Scholar 

  • Williamson D (2002) The curious history of yeast mitochondrial DNA. Nat Rev Genet 3:475–481

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank L. Kovac (Comenius University, Bratislava) and H. Fukuhara (Institute Curie, Orsay, France) for continuous support and helpful comments; J. Piskur (Technical University of Denmark, Lyngby, Denmark), G. Minarik (Comenius University, Bratislava) and members of our laboratories for discussions and/or technical assistance. B. F. Lang (University of Montreal, Quebec, Canada), D. Subramanian (University of North Carolina, Chapel Hill) and R. J. Resnick (Cornell University, Ithaca) are acknowledged for reading the manuscript and for valuable editorial advice. This work was supported by grants from the Howard Hughes Medical Institute (55000327), the Slovak Grant Agencies VEGA (1/9153/02 and 1/0006/03) and APVT (20-003902), the Fogarty International Research Collaboration Award (1-R03-TW05654-01), by institutional support (AV0Z5004920 and MSM143100008) and by the Danish Research Foundation.

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nosek, J., Novotna, M., Hlavatovicova, Z. et al. Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis. Mol Genet Genomics 272, 173–180 (2004). https://doi.org/10.1007/s00438-004-1046-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1046-0

Keywords

Navigation