Skip to main content
Log in

Comparative analysis of Mutator -like transposases in sugarcane

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The maize Mutator ( Mu) system has been described as the most active and mutagenic plant transposon so far discovered. Mu -like elements (MULEs) are widespread among plants, and many and diverse variants can coexist in a particular genome. The autonomous regulatory element MuDR contains two genes: mudrA encodes the transposase, while the function of the mudrB gene product remains unknown. Although mudrA -like sequences are ubiquitous in plants, mudrB seems to be restricted to the genus Zea. In the SUCEST (the Brazilian Sugarcane EST Sequencing Project) database, several mudrA -like cDNAs have been identified, suggesting the presence of a transcriptionally active Mu system in sugarcane. Phylogenetic studies have revealed the presence in plants of four classes of mudrA -like sequences, which arose prior to the monocot/eudicot split. At least three of the four classes are also found in the progenitors of the sugarcane hybrid ( Saccharum spp.), Saccharum officinarum and S. spontaneum. The frequency of putatively functional transposase ORFs varies among the classes, as revealed at both cDNA and genomic levels. The predicted products of some sugarcane mudrA -like transcripts contain both a DNA-binding domain and a transposase catalytic-site motif, supporting the idea that an active Mu system exists in this hybrid genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  Google Scholar 

  • Benito MI, Walbot V (1997) Characterization of the maize Mutator transposable element MURA transposase as a DNA-binding protein. Mol Cell Biol 17:5165–5175

    CAS  PubMed  Google Scholar 

  • Chalvet F, Grimaldi C, Kaper F, Langin T, Daboussi MJ (2003) Hop, an active Mutator -like element in the genome of the fungus Fusarium oxysporum. Mol Biol Evol 20:1362–75

    Article  CAS  PubMed  Google Scholar 

  • D’Hont A, Glaszman JC (2001) Sugarcane genome analysis with molecular markers: a first decade of research. Proc Int Soc Sugarcane Technol 24:556–559

    Google Scholar 

  • D’Hont A, Grivet L, Feldman P, Rao S, Berding N, Glaszmann JC (1996) Characterization of the double genome structure of modern sugarcane cultivars ( Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413

    Article  PubMed  Google Scholar 

  • Eisen JA, Benito MI, Walbot V (1994) Sequence similarity of putative transposases links the maize Mutator autonomous elements and a group of bacterial insertion sequences. Nucleic Acids Res 22:2634–2636

    CAS  PubMed  Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    CAS  PubMed  Google Scholar 

  • Haren L, Ton-Hoang B, Chandler M (1999) Integrating DNA: transposases and retroviral integrases. Annu Rev Microbiol 53:245–281

    Google Scholar 

  • Hartl DL, Lohe AR, Lozovskaya ER (1997) Modern thoughts on an ancient Marinere: function, evolution, regulation. Annu Rev Genet 31:337–358

    Article  CAS  PubMed  Google Scholar 

  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22:4673–4680

  • Hudson ME, Lisch DR, Quail PH (2003) The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J 34:453 –471

    Article  CAS  PubMed  Google Scholar 

  • Lisch DR (2002) Mutator transposons. Trends Plant Sci 7:498–504

    Article  CAS  PubMed  Google Scholar 

  • Lisch DR, Girad L, Donlin M, Freeling M (1999) Functional analysis of deletion derivatives of the maize transposon MuDR delineates roles for the MURA and MURB proteins. Genetics 151:331–341

    CAS  PubMed  Google Scholar 

  • Lisch DR, Freeling M, Langham RJ, Choy MY (2001) Mutator transposase is widespread in the grasses. Plant Physiol 125:1293–1303

    Article  CAS  PubMed  Google Scholar 

  • Raizada MN, Walbot V (2000) The late developmental pattern of Mu transposon excision is conferred by a cauliflower mosaic virus 35S-driven MURA cDNA in transgenic maize. Plant Cell 12:5–21

    Article  CAS  PubMed  Google Scholar 

  • Robertson DS (1978) Characterization of a Mutator system in maize. Mutat Res 51:21–28

    Article  Google Scholar 

  • Rossi M, Araujo PG, Van Sluys MA (2001) Survey of transposable elements in sugarcane expressed sequence tags (ESTs). Genetics Mol Biol 24:147–154

    CAS  Google Scholar 

  • Rudenko GN, Walbot V (2001) Expression and post-transcriptional regulation of maize transposable elements MuDR and its derivatives. Plant Cell 13:553–570

    Article  CAS  PubMed  Google Scholar 

  • Rudenko GN, Ono A, Walbot V (2003) Initiation of silencing of maize MuDR/Mu transposable elements. Plant J 33:1013–1025

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Singer T, Yordan C, Martienssen RA (2001) Robertson’s Mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene Decrease in DNA Methylation ( DDM1). Genes Dev 15:591–602

    Article  CAS  PubMed  Google Scholar 

  • Slotkin RK, Freeling M, Lisch D (2003) Mu killer causes the heritable inactivation of the Mutator family of transposable elements in Zea mays. Genetics 165:781–797

    CAS  PubMed  Google Scholar 

  • Swofford DL (1993) PAUP: phylogenetic analysis using parsimony (Version3.0). Illinois Natural History Survey, Urbana-Champaign

  • Vettore AL, et al (2003) Analysis and functional annotation of an expressed sequence tag collection for the tropical crop sugarcane. Genome Res 13:2725–2735

    Article  PubMed  Google Scholar 

  • Walbot V (1992) Strategies for mutagenesis and gene cloning using transposon tagging and T-DNA insertional mutagenesis. Annu Rev Plant Physiol. Plant Mol Biol 43:49–82

    Article  CAS  Google Scholar 

  • Yu Z, Wright SI, Bureau T (2000) Mutator elements in Arabidopsis thaliana: structure, diversity and evolution. Genetics 156:2019–2031

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M. Rossi, P. G. Araujo, E. M. Jesus and A. M. Varani were recipients of FAPESP fellowships. This work was partially supported with grants from FAPESP and CNPq (Brazil) to MAVS and carried out in compliance with current laws governing genetic experimentation in Brazil

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-A. Van Sluys.

Additional information

The first two authors contributed equally to this paper

Communicated by M.-A. Grandbastien

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, M., Araujo, P.G., de Jesus, E.M. et al. Comparative analysis of Mutator -like transposases in sugarcane. Mol Genet Genomics 272, 194–203 (2004). https://doi.org/10.1007/s00438-004-1036-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1036-2

Keywords

Navigation