Skip to main content

Advertisement

Log in

Identification of genes preferentially expressed in the pathogenic yeast phase of Paracoccidioides brasiliensis, using suppression subtraction hybridization and differential macroarray analysis

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Paracoccidioides brasiliensis, a thermodimorphic fungus, is the causative agent of paracoccidioidomycosis (PCM), the most prevalent systemic mycosis in Latin America. Pathogenicity appears to be intimately related to the dimorphic transition from the hyphal to the yeast form, which is induced by a shift from environmental temperature to the temperature of the mammalian host. Little information is available on the P. brasiliensis genes that are necessary during the pathogenic phase. We have therefore undertaken Suppression Subtraction Hybridization (SSH) and macroarray analyses with the aim of identifying genes that are preferentially expressed in the yeast phase. Genes identified by both procedures as being more highly expressed in the yeast phase are involved in basic metabolism, signal transduction, growth and morphogenesis, and sulfur metabolism. In order to test whether the observed changes in gene expression reflect the differences between the growth conditions used to obtain the two morphological forms rather than differences intrinsic to the cell types, we performed real-time RT-PCR experiments using RNAs derived from both yeast cells and mycelia that had been cultured at 37°C and 26°C in either complete medium (YPD or Sabouraud) or minimal medium. Twenty genes, including AGS1 (α-1,3-glucan synthase) and TSA1 (thiol-specific antioxidant), were shown to be more highly expressed in the yeast cells than in the hyphae. Although their levels of expression could be different in rich and minimal media, there was a general tendency for these genes to be more highly expressed in the yeast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped blast and Psi-Blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Bammert GF, Fostel JM (2000) Genome-wide expression patterns in S. cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicrob Agents Chemother 44:1255–1265

    PubMed  Google Scholar 

  • Berman J, Sudbery PE (2002) Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Genet 3:918–930

    Article  CAS  Google Scholar 

  • Bialek R, Ibricevic A, Fothergill A, Begerow D (2000) Small subunit ribosomal DNA sequences shows Paracoccidioides brasiliensis closely related to Blastomyces dermatitidis. J Clin Microbiol 38:3190–3193

    CAS  PubMed  Google Scholar 

  • Borges-Walsmley MI, Walmsley AR (2000) cAMP signaling in pathogenic fungi: control of dimorphic switching and pathogenicity. Trends Microbiol 8:133–141

    CAS  PubMed  Google Scholar 

  • Borges-Walmsley MI, Chen D, Shu X, Walmsley AR (2002) The pathobiology of Paracoccidioides brasiliensis. Trends Microbiol 10:80–87

    Article  CAS  PubMed  Google Scholar 

  • Boyce KJ, Hymes MJ, Andrianopoulos A (2001) The CDC42 homolog of the dimorphic fungus Penicillium marneffei is required for correct cell polarization during growth but not development. J Bacteriol 183:3447–3457

    Article  CAS  PubMed  Google Scholar 

  • Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109

    CAS  PubMed  Google Scholar 

  • Choi W, Yoo YJ, Kim M, Shin D, Jeon HB, Choi W (2003) Identification of proteins highly expressed in the hyphae of Candida albicans by two-dimensional electrophoresis. Yeast 20:1053–1060

    Article  CAS  PubMed  Google Scholar 

  • Cisalpino PS, Puccia R, Yamauchi LM, Cano MIN, da Silveira JF, Travassos LR (1996) Cloning, characterization, and epitope expression of the major diagnostic antigen of Paracoccidioides brasiliensis. J Biol Chem 271:4553–4560

    Article  CAS  PubMed  Google Scholar 

  • Csank C, Schröppel K, Leberer E, Harcus D, Mohamed O, Meloche S, Thomas DY, Whiteway M (1998) Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 66:2713–2721

    CAS  PubMed  Google Scholar 

  • Da Fonseca CA, Jesuino RSA, Felipe MS, Cunha DA, Brito WA, Soares CMA (2001) Two-dimensional electrophoresis and characterization of antigens from Paracoccidioides brasiliensis. Microbes Infection 3:1–8

    Google Scholar 

  • Da Silva SP, Borges-Walmsley MI, Pereira IS, Soares CM, Walmsley AR, Felipe MS (1999) Differential expression of an hsp70 gene during transition from the mycelial to the infective yeast form of the human pathogenic fungus Paracoccidioides brasiliense. Mol Microbiol 31:1039–1050

    Article  PubMed  Google Scholar 

  • Davidson JF, Schiestl RH (2001) Cytotoxic and genotoxic consequences of heat stress are dependent on the presence of oxygen in Saccharomyces cerevisiae. J Bacteriol 183:4580–4587

    Article  CAS  PubMed  Google Scholar 

  • Diatchenko L, Lau Y-F C, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtraction hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    CAS  PubMed  Google Scholar 

  • Ewing B, Green P (1998) Base calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:196–194

    Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185

    CAS  PubMed  Google Scholar 

  • Goldman GH, et al (2003) EST analysis of the human pathogen Paracoccidioides brasiliensis yeast phase: identification of putative homologues of Candida albicans virulence/pathogenicity genes. Eukaryotic Cell 2:34–48

    Article  PubMed  Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    CAS  PubMed  Google Scholar 

  • Higgins VJ, Beckhouse AG, Oliver AD, Roger PJ, Dawes IW (2003) Yeast genome-wide expression analysis identifies a strong ergosterol and oxidative stress response during the initial stages of an industrial lager fermentation. Appl Environ Microbiol 69:4777–4787

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed  Google Scholar 

  • Hwang L, Hocking-Murray D, Bahrami AK, Andersson M, Rine J, Sil A (2003) Identifying phase-specific genes in the fungal pathogen Histoplasma capsulatum by using a genomic shotgun microarray. Mol Biol Cell 14:2314–2326

    Article  CAS  PubMed  Google Scholar 

  • Leberer E, Ziegelbauer K, Schmidt A, Harcus D, Dignard D, Ash J, Johnson L, Thomas DY (1997) Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p. Curr Biol 7:539–546

    CAS  PubMed  Google Scholar 

  • Lehninger AL, Nelson DL, Cox MM (1993) Principles of biochemistry (2nd edn). Worth Publishers, New York

  • Lengeler KB, Davidson RC, D’Souza C, Harshima T, Shen W-C, Wang P, Pan X, Waugh M, Heitman J (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785

    CAS  PubMed  Google Scholar 

  • Levery SB, Toledo MS, Straus AH, Takahashi HK (1998) Structure elucidation of sphingolipids from the mycopathogen Paracoccidioides brasiliensis: an immunodominant β-galacto-furanose residue is carried by a novel glycosylinositol phosphorylceramide antigen. Biochemistry 37:8764–8775

    Article  CAS  PubMed  Google Scholar 

  • Lo H-S, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949

    CAS  PubMed  Google Scholar 

  • Maresca B, Kobayashi GS (2000) Dimorphism in Histoplasma capsulatum and Blastomyces dermatitidis. In: Ernst JF, Schimdt R (eds) Dimorphism in human pathogenic and apathogenic yeasts (Contributions to microbiology, vol 5). Karger, Basel, pp 201–216

  • Medoff G, Audrey P, Kobayashi G (1987) Mycelial- to yeast-phase transitions of the dimorphic fungi Blastomyces dermatitidis and Paracoccidioides brasiliensis. J Bacteriol 169:4055–4060

    CAS  PubMed  Google Scholar 

  • Momany M (2002) Polarity in filamentous fungi: establishment, maintenance and new axes. Curr Opin Microbiol 5:580–585

    Article  CAS  PubMed  Google Scholar 

  • Paris S, Duran-Gonzalez S, Mariat F (1985) Nutritional studies on Paracoccidioides brasiliensis: the role of organic sulfur in dimorphism. J Med Vet Mycol 23:85–89

    CAS  Google Scholar 

  • Restrepo A., Jiménez BE (1980) Growth of Paracoccidioides brasiliensis yeast phase in a chemically defined culture medium. J Clin Microbiol 12:279–281

    CAS  PubMed  Google Scholar 

  • Restrepo A, McEwen JG, Castañeda E (2001) The habitat of Paracoccidioides brasiliensis: how far from solving the riddle? Med Mycol 39:233–241

    CAS  PubMed  Google Scholar 

  • Rocha CRC, Schröppel K, Harcus D, Macil A, Dignard D, Taylor BN, Thomas DY, Whiteway M, Leberer E (2001) Signaling through adenyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol Biol Cell 12:3631–3643

    CAS  PubMed  Google Scholar 

  • Romani L, Bitoni F, Puccetti P (2003) Adaptation of Candida albicans to the host environment: the role of morphogenesis in virulence and survival in mammalian hosts. Curr Opin Microbiol 6:338–343

    Article  PubMed  Google Scholar 

  • Rooney PJ, Klein BS (2002) Linking fungal morphogenesis with virulence. Cell Microbiol 4:127–137

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual (3rd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • San-Blas G (1982) The cell wall of fungal human pathogens: its possible role in host-parasite relationship. A review. Mycopathologia 79:159–184

    CAS  PubMed  Google Scholar 

  • San-Blas G, Niño-Veja G (2001) Paracoccidioides brasiliensis: virulence and host response. In: Cihlar RL, Calderone RA (eds). Fungal pathogenesis: principles and clinical applications. Marcel Dekker, New York

    Google Scholar 

  • Schummer M, Ng VLV, Baumgarner RE, Nelson PS, Schummer B, Bednarski DW, Hassell L, Baldwin RL, Karlan BY, Hood L (1999) Comparative hybridization of an array of 21500 ovarian cDNAs for the discovery of genes overexpressed in ovarian carcinomas. Gene 238:375–385

    Article  CAS  PubMed  Google Scholar 

  • Semighini CP, Marins M, Goldman MHS, Goldman GH (2002) Quantitative analysis of the relative transcript levels of ABC transporter Atr genes in Aspergillus nidulans by Real-Time Reverse Transcription-PCR assay. Appl Environ Microbiol 68:1351–1357

    Article  CAS  PubMed  Google Scholar 

  • Stoldt VR, Sonnenborn A, Leuker CE, Ernst JF (1997) Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16:1982–1991

    CAS  PubMed  Google Scholar 

  • Toledo MS, Levery SB, Straus AH, Suzuki E, Momany M, Glushka J, Moulton JM, Takahashi HK (1999) Characterization of sphingolipids from mycopathogens: factors correlating with expression of 2-hydroxy fatty acyl ( E)-Δ[3]-unsaturation in cerebrosides of Paracoccidioides brasiliensis and Aspergillus fumigatus. Biochemistry 38:7294–7306

    Article  CAS  PubMed  Google Scholar 

  • Venâncio EJ, Kyaw CM, Mello V, Silva SP, Soares CMA, Felipe MSS, Silva-Pereira I (2002) Identification of differentially expressed transcripts in the human pathogenic fungus Paracoccidioides brasiliensis by differential display. Med Mycol 40:45–51

    PubMed  Google Scholar 

  • Vigh L, Maresca B, Horwood JL (1998) Does the membrane physical state control the expression of heat shock and other genes? Trends Biochem Sci 23:369–374

    CAS  PubMed  Google Scholar 

  • Yaar L, Mavarech M, Koltin Y (1997) RAS -related gene ( CaRSR1) is involved in budding, cell morphogenesis and hypha development. Microbiology 143:3033–3044

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and MCT-PRONEX, Brazil, for financial support. We also thank the two anonymous reviewers for useful comments

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Goldman.

Additional information

Communicated by C P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, E., Ferreira, M.E.S., Drummond, R.D. et al. Identification of genes preferentially expressed in the pathogenic yeast phase of Paracoccidioides brasiliensis, using suppression subtraction hybridization and differential macroarray analysis. Mol Genet Genomics 271, 667–677 (2004). https://doi.org/10.1007/s00438-004-1016-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1016-6

Keywords

Navigation