Skip to main content
Log in

Naturally mosaic operons for secondary metabolite biosynthesis: variability and putative horizontal transfer of discrete catalytic domains of the epothilone polyketide synthase locus

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

A putative instance of horizontal gene transfer (HGT) involving adjacent, discrete β-ketoacyl synthase (KS), acyl carrier protein (ACP) and nonribosomal peptide synthase (NRPS) domains of the epothilone Type I polyketide biosynthetic gene cluster from the myxobacterium Sorangium cellulosom was identified using molecular phylogenetics and sequence analyses. The specific KS domain of the module EPO B fails to cluster phylogenetically with other epothilone KS sequences present at this locus, in contrast to what is typically observed in many other Type I polyketide synthase (PKS) biosynthetic loci. Furthermore, the GC content of the epoB KS, epoA ACP and NRPS domains differs significantly from the base composition of other epothilone domain sequences. In addition, the putatively transferred epothilone loci are located near previously identified transposon-like sequences. Lastly, comparison with other KS loci revealed another possible case of horizontal transfer of secondary metabolite genes in the genus Pseudomonas. This study emphasizes the use of several lines of concordant evidence (phylogenetics, base composition, transposon sequences) to infer the evolutionary history of particular gene and enzyme sequences, and the results support the idea that genes coding for adaptive traits, e.g. defensive natural products, may be prone to transposition between divergent prokaryotic taxa and genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–402

    PubMed  Google Scholar 

  • August PR, Tang L, Yoon YJ, Ning S, Muller R, Yu TW, Taylor M, Hoffman D, Kim CG, Zhang X (1998) Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem Biol 5:69–79

    CAS  PubMed  Google Scholar 

  • Avise JC, Ball RM (1990) Principles of genealogical concordance in species concepts and biological taxonomy. In: Futuyama D, Antonovics J (eds) Oxford surveys in evolutionary biology, vol 7. Oxford University Press, Oxford, pp 45–67

  • Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL (2002) The Pfam protein families database. Nucleic Acids Res 30:276–280

    CAS  PubMed  Google Scholar 

  • Bentley SD, et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    PubMed  Google Scholar 

  • Beyer S, Kunze B, Silakowski B, Muller R (1999) Metabolic diversity in myxobacteria—identification of the myxalamid and the stigmatellin biosynthetic gene cluster of Stigmatella aurantiaca Sg a15 and a combined polyketide-(poly) peptide gene cluster from the epothilon producing strain Sorangium cellulosum So ce90. Biochim Biophys Acta 1445:185 −195

    CAS  PubMed  Google Scholar 

  • Blot M (1994) Transposable elements and adaptation of host bacteria. Genetica 93:5–12

    Google Scholar 

  • Brown EW, LeClerc JE, Kotewicz ML, Cebula TA (2001) The three R’s of bacterial evolution: how replication, repair, and recombination frame the origin of species. Environ Mol Mutagen 38:248–260

    Article  CAS  PubMed  Google Scholar 

  • Chadwick DJ, Whelan J (eds) (1992) Secondary metabolites: their function and evolution (Ciba Foundation Symposium). Wiley, Chichester

    Google Scholar 

  • Charity JC, Pak K, Delwiche CF, Hutcheson SW (2003) Novel exchangeable effector loci associated with the Pseudomonas syringae hrp pathogenicity island: evidence for integron-like assembly from transposed gene cassettes. Mol Plant Microbe Interact 16:495–507

    CAS  PubMed  Google Scholar 

  • Donadio S, Katz L (1992) Organization of the enzymatic domains in the multifunctional polyketide synthase involved in erythromycin formation in Saccharopolyspora erythraea. Gene 111:51–60

    CAS  PubMed  Google Scholar 

  • Du L, Shen B (2001) Biosynthesis of hybrid peptide-polyketide natural products. Curr Opin Drug Disc Dev 4:215–228

    CAS  Google Scholar 

  • Du L, Sanchez C, Chen M, Edwards DJ, Shen B (2000) The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase. Chem Biol 7:623–642

    Article  CAS  PubMed  Google Scholar 

  • Eisen J (2000) Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr Opin Genet Dev 10:606–611

    Article  CAS  PubMed  Google Scholar 

  • Gonnet GH, Benner SA (1991) Computational biochemistry research at ETH. (Technical Report 154, Departement Informatik, Eidgenössische Technische Hochschule, Zürich)

  • Graur D, Li WH (1997) Fundamentals of molecular evolution. Sinauer, Sunderland, Mass.

  • Haydock SF, Aparicio JF, Molnar I, Schwecke T, Khaw LE, Konig A, Marsden AF, Galloway IS, Staunton J, Leadlay PF (1995) Divergent sequence motifs correlated with the substrate specificity of (methyl) malonyl-CoA:acyl carrier protein transacylase domains in modular polyketide synthases. FEBS Lett 374:246–248

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89:10915–10919

    CAS  Google Scholar 

  • Hopwood DA (1997) Genetic contributions to understanding polyketide synthases. Chem Rev 97:2465–2497

    CAS  PubMed  Google Scholar 

  • Hopwood DA, Sherman DH (1990) Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet 24:37–66

    CAS  PubMed  Google Scholar 

  • Huang G, Zhang L, Birch RG (2001) A multifunctional polyketide-peptide synthetase essential for albicidin biosynthesis in Xanthomonas albilineans. Microbiology 147:631–642

    CAS  PubMed  Google Scholar 

  • Jain R, Rivera MC, Moore JE, Lake JA (2002) Horizontal gene transfer in microbial genome evolution. Theor Popul Biol 61:489–495

    Article  PubMed  Google Scholar 

  • Khosla C, Gokhale RS, Jacobsen JR, Cane DE (1999) Tolerance and specificity of polyketide synthases. Annu Rev Biochem 68:219–253

    CAS  PubMed  Google Scholar 

  • Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742

    Article  CAS  PubMed  Google Scholar 

  • Lan R, Reeves PR (1996) Gene transfer is a major factor in bacterial evolution. Mol Biol Evol 13:47–55

    CAS  PubMed  Google Scholar 

  • Lawrence JG (1998) Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci USA 95:9413–9417

    CAS  PubMed  Google Scholar 

  • Lawrence JG, Roth JR (1996) Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143:1843–1860.

    CAS  PubMed  Google Scholar 

  • Liisa BK, LB, Morton, RA, Golding GB (2001) Codon bias and base composition are poor indicators of horizontally transferred genes. Mol Biol Evol 18:404–412

    PubMed  Google Scholar 

  • Longley RE, Gunasekera SP, Faherty D, Mclane J, Dumont F (1993) Immunosuppression by discodermolide. Ann NY Acad Sci 696:94–107

    CAS  PubMed  Google Scholar 

  • Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2673

    Article  CAS  PubMed  Google Scholar 

  • McInerney JO (1998) GCUA: General Codon Usage Analyses. Bioinform Appl Notes 14:372–373

    Article  CAS  Google Scholar 

  • Moffit MC, Neilan BA (2003) Evolutionary affiliations within the superfamily of ketosynthases reflect complex pathway associations. J Mol Evol 56:446–457

    Article  PubMed  Google Scholar 

  • Molnar I, et al (2000) The biosynthetic gene cluster for the microtubule-stablizing agents epothilones A and B from Sorangium cellusom So ce90. Chem Biol 7:97–109

    CAS  PubMed  Google Scholar 

  • Motamedi H, Cai S-J, Shafiee A, Elliston KO (1997) Structural organization of a multifunctional polyketide synthase involved in the biosynthesis of the macrolide immunosuppressant FK506. Eur J Biochem 244:74–80

    CAS  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    CAS  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New York

  • Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci USA 98:12215–12220

    CAS  PubMed  Google Scholar 

  • Piel J (2002) A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci USA 99:14002–14007

    Article  CAS  PubMed  Google Scholar 

  • Romero D, Palacios R (1997) Gene amplification and genomic plasticity in prokaryotes. Annu Rev Genet 31:91–111

    Article  CAS  PubMed  Google Scholar 

  • Silakowski B, Kunze B, Muller R (2001) Multiple hybrid polyketide synthase/non-ribosomal peptide synthetase gene clusters in the myxobacterium Stigmatella aurantiaca. Gene 275:233–240

    CAS  PubMed  Google Scholar 

  • Snyder RV, Gibbs PDL, Palacios A, Abiy L, Dickey R, Lopez JV, Rein KS (2003) Polyketide synthase genes from marine dinoflagellates. Marine Biotechnol 5:1–12

    Article  CAS  Google Scholar 

  • Sosio M, Bossi E, Bianci A, Donadio S (2000) Multiple peptide synthetase gene clusters in Actinomycetes. Mol Gen Genet 264:213–221

    CAS  PubMed  Google Scholar 

  • Staunton J, Weissman KJ. (2001) Polyketide biosynthesis: a millennium review. Natural Prod Rep 18:380–416

    Article  CAS  Google Scholar 

  • Stone MJ, Williams DH (1992) On the evolution of functional secondary metabolites (natural products). Mol Microbiol 6:29–34

    CAS  PubMed  Google Scholar 

  • Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969

    CAS  Google Scholar 

  • Sueoka N (1992) Directional mutation pressure, selective constraints, and genetic equilibria. J Mol Evol 34:95–114

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Gojobori T (1999) A method for detecting positive selection at single amino acid sites. Mol Biol Evol 16:1315–1328

    CAS  PubMed  Google Scholar 

  • Swofford DL (2001) PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods), Version 4. Sinauer, Sunderland, Mass.

  • Tang L, Shah S, Chung L, Carney J, Katz L, Khosla C, Julien B (2000) Cloning and heterologous expression of the epothilone gene cluster. Science 287:640–642

    Google Scholar 

  • Thompson JD, Higgins D, Gibson TJ (1994) CLUSTAL version W: a novel multiple sequence alignment program. Nucleic Acids Res 22:4673–4680.

    PubMed  Google Scholar 

  • Tsoi CJ, Khosla C (1995) Combinatorial biosynthesis of ‘unnatural’ natural products: the polyketide example. Chem Biol 2:355–362

    CAS  PubMed  Google Scholar 

  • Underwood AJ (1998) Experiments in ecology. Cambridge University Press, London

  • Wagner A (2002) Selection and gene duplication: a view from the genome. Genome Biol 3:1012.1–1012.3

    Article  Google Scholar 

  • Walton JD (2000) Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: a hypothesis. Fungal Genet Biol 30:167–171

    Article  CAS  PubMed  Google Scholar 

  • Wiener P, Egan S, Wellington EM (1998) Evidence for transfer of antibiotic-resistance genes in soil populations of streptomycetes. Mol Ecol 7:1205–1216

    CAS  PubMed  Google Scholar 

  • Zgur-Bertok D (1999) Mechanisms of horizontal gene transfer. Folia Biol (Praha) 45:91–96

    Google Scholar 

Download references

Acknowledgements

The author is grateful for critical reading of this manuscript by Drs. Eric Brown and Amy Wright and for statistical analyses by Karen Sandell, M.S. This material is based upon work supported by the National Science Foundation (NSF) under Grant No. 9974984 to JVL, and was carried out in accordance with current laws governing genetic experimentation in the USA. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the NSF. This manuscript is Harbor Branch Oceanographic Institution Contribution #1519.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Lopez.

Additional information

Communicated by W. Arber

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez, J.V. Naturally mosaic operons for secondary metabolite biosynthesis: variability and putative horizontal transfer of discrete catalytic domains of the epothilone polyketide synthase locus. Mol Genet Genomics 270, 420–431 (2004). https://doi.org/10.1007/s00438-003-0937-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-003-0937-9

Keywords

Navigation