Skip to main content
Log in

Impact of host sex and age on the diversity of endoparasites and structure of individual-based host-parasite networks in nyalas (Tragelaphus angasii Angas) from three game reserves in KwaZulu-Natal province, South Africa

  • Research
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

In recent years, numerous studies have examined the effect of host sex and age on the structure of parasite communities in several host taxa under various environmental conditions and in different geographic regions. However, the influence of such factors on the structure of host-parasite networks has received less attention, and remarkably few studies have been carried out on large terrestrial mammals. In this study, we investigated the effects of host age and sex on the parasite infra- and component communities of nyalas (Tragelaphus angasii) and on the structure of individual-based nyala-endoparasite networks. We also aimed to evaluate to what extent these effects vary spatially and if they are mediated by conservation management. Based on a data set of internal macroparasites of 74 nyalas from three game reserves in KwaZulu-Natal province, we found that host age strongly influenced parasite community structure as well as the structure of parasite-nyala networks, whereas host sex played a minor role. However, the effects of both host sex and age were mediated by environmental conditions and thus led to different patterns at the three localities. Our findings highlight that host-parasite communities from different localities should not be pooled when conducting host-parasite network and community studies as this may bias results and mask patterns that are typical for a given locality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data included are from previously published work. The datasets used and/or analyzed are available from the corresponding author upon reasonable request.

Code availability

We used standard codes of the respective R packages.

References

  • Almeida-Neto M, Guimaraes P, Guimaraes PR Jr, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227–1239

    Article  Google Scholar 

  • Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P (2006) Seasonality and the dynamics of infectious diseases. Ecol Lett 9:467–484

    Article  PubMed  Google Scholar 

  • Amundson CL, Traub NJ, Smith-Herron AJ, Flint PL (2016) Helminth community structure in two species of arctic-breeding waterfowl. Int J Parasitol: Parasites Wildl 5:263–272. https://doi.org/10.1016/j.ijppaw.2016.09.002

    Article  CAS  Google Scholar 

  • Arneberg P (2002) Host population density and body mass as determinants of species richness in parasite communities: comparative analyses of directly transmitted nematodes of mammals. Ecography 25:88–94

    Article  Google Scholar 

  • Baldacchino F, Desquesnes M, Mihok S, Foil LD, Duvallet G, Jittapalapong S (2014) Tabanids: neglected subjects of research, but important vectors of disease agents! Infect Genet Evol 28:96–615

    Article  Google Scholar 

  • Balic A, Bowles VM, Meeusen EN (2000) The immunobiology of gastrointestinal nematode infections in ruminants. Adv Parasitol 45:181–241

    Article  PubMed  CAS  Google Scholar 

  • Balme GA, Slotow R, Hunter LTB (2010) Edge effects and the impact of non-protected areas in carnivore conservation: leopards in the Phinda-Mkhuze Complex, South Africa. Anim Cons 2010:1–9

    Google Scholar 

  • Barton K (2020) MuMIn: Multi-model inference, R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn

  • Bascompte J, Jordano P, Melian CJ, Olesen JM (2003) The nested assembly of plant–animal mutualistic networks. Proc Natl Acad Sci USA 100:9383–9387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433

    Article  PubMed  CAS  Google Scholar 

  • Bellay S, de Oliveira EF, Almeida-Neto M, Abdallah VD, de Azevedo RK, Takemoto RM, Luque JL (2015) The patterns of organisation and structure of interactions in a fish-parasite network of a neotropical river. Int J Parasitol 45:549–557

    Article  PubMed  Google Scholar 

  • Bellay S, Oda FH, Almeida-Neto M, de Oliveira EF, Takemoto RM, Balbuena JA (2020) Host age predicts parasite occurrence, richness, and nested infracommunities in a pilot whale-helminth network. Parasitol Res 119:2237–2244. https://doi.org/10.1007/s00436-020-06716-1

    Article  PubMed  Google Scholar 

  • Benítez-Malvido J, Giménez A, Graciá E, Rodríguez-Caro RC, De Ybáñez RR, Siliceo-Cantero HH, Traveset A (2019) Impact of habitat loss on the diversity and structure of ecological networks between oxyurid nematodes and spur-thighed tortoises (Testudo graeca L). PeerJ 7:e8076

    Article  PubMed  PubMed Central  Google Scholar 

  • Beveridge I, Pullman AL, Martin RR, Barelds A (1989) Effects of temperature and relative humidity on development and survival of the free-living stages of Trichostrongylus colubriformis, T. rugatus and T. vitrinus. Vet Parasitol 33:143–153

    Article  PubMed  CAS  Google Scholar 

  • Blüthgen N (2010) Why network analysis is often disconnected from community ecology: a critique and an ecologist’s guide. Basic Appl Ecol 11:185–195. https://doi.org/10.1016/j.baae.2010.01.001

    Article  Google Scholar 

  • Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:1–12. https://doi.org/10.1186/1472-6785-6-9

    Article  Google Scholar 

  • Boomker J, Horak IG, de Vos V (1989) Parasites of South African wildlife. IV. Helminths of kudu, Tragelaphus strepsiceros, in the Kruger National Park. Onderstepoort J Vet Res 56:111–121

    PubMed  CAS  Google Scholar 

  • Boomker J, Horak IG, Flamand JR (1991) Parasites of South African wildlife. XII. Helminths of nyala, Tragelaphus angasii, in Natal. Onderstepoort J Vet Res 58:275–280

    PubMed  CAS  Google Scholar 

  • Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Maechler M, Bolker BM (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R Journal 9:378–400

    Article  Google Scholar 

  • Calvete C, Estrada R, Lucientes J, Estrada A, Telletxea I (2003) Correlates of helminth community in the red-legged partridge (Alectoris rufa L.) in Spain. J Parasitol 89:445–451. https://doi.org/10.1645/0022-3395(2003)089[0445:COHCIT]2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • Calvete C, Blanco-Aguiar JA, Virgós E, Cabezas-Diaz S, Villafuerte R (2004) Spatial variation in helminth community structure in the red-legged partridge (Alectoris rufa L.): effects of definitive host density. Parasitology 129:101–113. https://doi.org/10.1017/S0031182004005165

    Article  PubMed  CAS  Google Scholar 

  • Campião KM, Dáttilo W (2020) Biological drivers of individual-based anuran-parasite networks under contrasting environmental conditions. J Helminthol 94(e167):1–7

    Google Scholar 

  • Cardoso TS, Andreazzi CS, Maldonado Junior A, Gentile R (2021) Functional traits shape small mammal-helminth network: patterns and processes in species interactions. Parasitology 148:947–955

    Article  PubMed  Google Scholar 

  • Chaisiri K, Chou M, Siew CC, Morand S, Ribas A (2017) Gastrointestinal helminth fauna of rodents from Cambodia: emphasizing the community ecology of host-parasite associations. J Helminthol 91:726–738. https://doi.org/10.1017/S0022149X16000869

    Article  PubMed  CAS  Google Scholar 

  • Citterio CV, Caslini C, Milani F, Sala M, Ferrari N, Lanfranchi P (2006) Abomasal nematode community in an alpine chamois (Rupicapra R. rupicapra) population before and after a die-off. J Parasitol 92:918–927

    Article  PubMed  Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Comp Syst, 1695. Available at http://igraph.org

  • Dallas TA, Han BA, Nunn CL, Park AW, StephensPR DJM (2019) Host traits associated with species roles in parasite sharing networks. Oikos 128:23–32

    Article  Google Scholar 

  • D’Bastiani E, Campião KM, Boeger WA, Araújo SB (2020) The role of ecological opportunity in shaping host–parasite networks. Parasitology 147:1452–1460

    Article  PubMed  Google Scholar 

  • Decristophoris PM, von Hardenberg A, McElligott AG (2007) Testosterone is positively related to the output of nematode eggs in male Alpine ibex (Capra ibex) faeces. Evol Ecol Res 9:1277–1292

    Google Scholar 

  • Delignette-Muller ML, Dutang C (2015) fitdistrplus: an R package for fitting distributions. J Stat Software 64:1–34

    Article  Google Scholar 

  • Dormann CF (2011) How to be a specialist? Quantifying specialisation in pollination networks. Network Biol 1:1–20

    Google Scholar 

  • Dormann CF, Gruber B, Fruend J (2008) Introducing the bipartite package: analysing ecological networks. R News 8:8–11

    Google Scholar 

  • Du Preez L, Netherlands E, Coetzer A, de Swardt J, Vivier L, Vlok W, Bouwman H, Smit NJ (2016) Chapter 7: Biodiversity: observed threats and potential conservation interventions for selected invertebrate and vertebrate groups. In: Smit NJ, Vlok W, van Vuuren JHJ, du Preez L, van Eeden E, Obrien GC, Wepener V (eds) Socio-ecological system management of the lower Phongolo River and Floodplain using relative risk methodology. Technical Report number 2185/1/16, Water Research Commission, South Africa, pp 233–298. https://doi.org/10.13140/RG.2.2.29744.46082

  • Eduardo SL (1983) The taxonomy of the family Paramphistomidae Fischoeder, 1901 with special reference to the morphology of species occurring in ruminants. III. Revision of the genus Calicophoron Näsmark, 1937. Sys Parasitol 5:25–79

    Article  CAS  Google Scholar 

  • Esterhuizen J (2006) Seasonal abundance of horse flies (Diptera: Tabanidae) from two conservation areas in northeastern KwaZulu-Natal Province, South Africa. Afr Entomol 14:395–397

    Google Scholar 

  • Esser HJ, Foley JE, Bongers F, Herre EA, Miller MJ, Prins HH, Jansen PA (2016) Host body size and the diversity of tick assemblages on neotropical vertebrates. Int J Parasitol: Parasites Wildl 5:295–304

    Google Scholar 

  • Ezemvelo KZN Wildlife (2009) Ndumo game reserve: integrated management plan: 2009 to 2013, Version 1.0. Ezemvelo KZN Wildlife, Pietermaritzburg

  • Ezemvelo KZN Wildlife (2011) Protected area management plan: Hluhluwe-iMfolozi Park South Africa. Ezemvelo KZN Wildlife, Pietermaritzburg

    Google Scholar 

  • Fellis KJ, Negovetich NJ, Esch GW, Horak IG, Boomker J (2003) Patterns of association, nestedness, and species co-occurrence of helminth parasites in the greater kudu, Tragelaphus strepsiceros, in the Kruger National Park, South Africa, and the Etosha National Park, Namibia. J Parasitol 89:899–907

    Article  PubMed  Google Scholar 

  • Ferrari N, Rosà R, Lanfranchi P, Ruckstuhl KE (2010) Effect of sexual segregation on host–parasite interaction: model simulation for abomasal parasite dynamics in alpine ibex (Capra ibex). Int J Parasitol 40:1285–1293

    Article  PubMed  Google Scholar 

  • Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139:603–622

    Article  Google Scholar 

  • Frost SK (1981) Food selection in young naive impala Aepyceros melampus. S Afr J Zool 16:123–124

    Google Scholar 

  • Gallivan GJ, Horak IG (1997) Body size and habitat as determinants of tick infestations of wild ungulates in South Africa. S Afr J Wildl Res 27:63–70

    Google Scholar 

  • Govender J (2010) A comparative study of landcover/land use changes between Mkhuze, and three neighbouring private game reserves. MSC thesis, University of KwaZulu-Natal, South Africa

  • Harris NC, Dunn RR (2010) Using host associations to predict spatial patterns in the species richness of the parasites of North American carnivores. Ecol Lett 13:1411–1418

    Article  PubMed  Google Scholar 

  • Heckler RP, Borges FDA (2016) Climate variations and the environmental population of gastrointestinal nematodes of ruminants. Nematoda 3:e012016

    Article  Google Scholar 

  • Hoberg EP, Polley LY, Jenkins EJ, Kutz SJ (2008) Pathogens of domestic and free-ranging ungulates: global climate change in temperate to boreal latitudes across North America. Rev Sci Tech off Int Epiz 27:511–528

    Article  CAS  Google Scholar 

  • Holmes JC, Podesta R (1968) The helminths of wolves and coyotes from the forested regions of Alberta. Can J Zool 46:1193–1204

    Article  Google Scholar 

  • Horak IG, Boomker J, Flamand JRB (1995) Parasites of domestic and wild animals in South Africa. XXXIV. Arthropod parasites of nyalas in north-eastern KwaZulu-Natal. Onderstepoort J Vet Res 62:171–179

    PubMed  CAS  Google Scholar 

  • Horak IG, Boomker J, Junker K, Gallivan GJ (2021) Some gastrointestinal nematodes and ixodid ticks shared by several wildlife species in the Kruger National Park, South Africa. Parasitology 148:740–746

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Bininda Emonds OR, Stephens PR, Gittleman JL, Altizer S (2014) Phylogenetically related and ecologically similar carnivores harbour similar parasite assemblages. J Animal Ecol 83:671–680

    Article  Google Scholar 

  • Hunter LT, Pretorius K, Carlisle LC, Rickelton M, Walker C, Slotow R, Skinner JD (2007) Restoring lions Panthera leo to northern KwaZulu-Natal, South Africa: short-term biological and technical success but equivocal long-term conservation. Oryx 41:196–204

    Article  Google Scholar 

  • Isomursu M, Rätti O, Helle P, Hollmén T (2006) Sex and age influence intestinal parasite burden in three boreal grouse species. J Avian Biol 37:516–522

    Article  Google Scholar 

  • Johnson PT, Hoverman JT (2012) Parasite diversity and coinfection determine pathogen infection success and host fitness. Proc Natl Acad Sci 109:9006–9011

    Article  PubMed  PubMed Central  Google Scholar 

  • Joppa LN, Montoya JM, Solé R, Sanderson J, Pimm SL (2010) On nestedness in ecological networks. Evol Ecol Res 12:35–46

    Google Scholar 

  • Junker K, Horak IG, Penzhorn B (2015) History and development of research on wildlife parasites in southern Africa, with emphasis on terrestrial mammals, especially ungulates. Int J Parasitol: Parasites Wildl 4:50–70

    Google Scholar 

  • Kiffner C, Stanko M, Morand S, Khokhlova IS, Shenbrot GI, Laudisoit A, Leirs H, Hawlena H, Krasnov BR (2014) Variable effects of host characteristics on species richness of flea infracommunities in rodents from three continents. Parasitol Res 113:2777–2788

    Article  PubMed  Google Scholar 

  • Krasnov B, Poulin R (2010) Ecological properties of a parasite: species specific stability and geographical variation. In: Morand S, Krasnov B (eds) The biogeography of host-parasite interaction. Oxford University Press, Oxford, pp 99–113

    Google Scholar 

  • Krasnov BR, Van Der Mescht L, Matthee S, Khokhlova IS (2022) Host phylogeny and ecology, but not host physiology, are the main drivers of (dis) similarity between the host spectra of fleas: application of a novel ordination approach to regional assemblages from four continents. Parasitology 149:124–137

    Article  PubMed  Google Scholar 

  • Le Roux P (1930) A preliminary communication on the life cycle of Cotylophoron cotylophorum and its pathogenicity for sheep and cattle. 16th Report Director Vet Serv, Dept Agric Union South Africa, Pretoria, 243–253

  • Lima DP Jr, Giacomini HC, Takemoto RM, Agostinho AA, Bini LM (2012) Patterns of interactions of a large fish–parasite network in a tropical floodplain. J Animal Ecol 81:905–913

    Article  Google Scholar 

  • Llopis-Belenguer C, Balbuena JA, Lange K, de Bello F, Blasco-Costa I (2019) Towards a unified functional trait framework for parasites. Trends Parasitol 35:972–982

    Article  PubMed  Google Scholar 

  • Martínez-Guijosa J, Martínez-Carrasco C, López-Olvera JR, Fernández-Aguilar X, Colom-Cadena A, Cabezón O, Serrano E (2015) Male-biased gastrointestinal parasitism in a nearly monomorphic mountain ungulate. Parasites Vectors 8:1–5

    Article  Google Scholar 

  • McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297

    Article  Google Scholar 

  • Minchin PR (1987) An evaluation of relative robustness of techniques for ecological ordinations. Vegetatio 69:89–107

    Article  Google Scholar 

  • Moore SL, Wilson K (2002) Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297:2015–2018

    Article  PubMed  CAS  Google Scholar 

  • Morand S, McIntyre M, Baylis M (2014) Domesticated animals and human infectious diseases of zoonotic origins: domestication time matters. Infect Genet Evol 24:76–81

    Article  PubMed  Google Scholar 

  • Mucina L, Rutherford MC (2006) The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19, South African National Biodiversity Institute, Pretoria

  • Negovetich NJ, Fellis KJ, Esch GW, Horak IG, Boomker J (2006) An examination of the infracommunities and component communities from impala (Aepyceros melampus) in the Kruger National Park, South Africa. J Parasitol 92:1180–1190

    Article  PubMed  CAS  Google Scholar 

  • Nielsen ÓK, Morrill A, Skírnisson K, Stenkewitz U, Pálsdóttir GR, Forbes MR (2020) Host sex and age typically explain variation in parasitism of rock ptarmigan: implications for identifying determinants of exposure and susceptibility. J Avian Biol 51:e02472. https://doi.org/10.111/jav.02472

  • O’Connor LJ, Walkden-Brown SW, Kahn LP (2006) Ecology of the free-living stages of major trichostrongylid parasites of sheep. Vet Parasitol 142:1–5

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn G, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020) vegan: Community Ecology Package. R package. version 2.5–7. https://CRAN.R-project.org/package=vegan

  • Opsahl T (2009) Structure and evolution of weighted networks. University of London (Queen Mary College), London, UK, pp. 104–122. Available at http://toreopsahl.com/publications/thesis/; http://toreopsahl.com/tnet/

  • Pavoine S (2019) An ordination approach to explore similarities among communities. J Theoretical Biol 462:85–96. https://doi.org/10.1016/j.jtbi.2018.11.002

    Article  Google Scholar 

  • Pavoine S (2020) adiv: An R package to analyse biodiversity in ecology. Methods Ecol Evol 11:1106–1112. https://doi.org/10.1111/2041-210X.13430

    Article  Google Scholar 

  • Pavoine S, Ricotta C (2014) Functional and phylogenetic similarity among communities. Methods Ecol Evol 5:666–675. https://doi.org/10.1111/2041-210X.12193

    Article  Google Scholar 

  • Pfukenyi DM, Mukaratirwa S (2018) Amphistome infections in domestic and wild ruminants in East and Southern Africa: A review. Onderstepoort J Vet Res 85:1–13

    Article  Google Scholar 

  • Pilosof S, Morand S, Krasnov BR, Nunn CL (2015) Potential parasite transmission in multi-host networks based on parasite sharing. PLoS One 10 (3): e0117909. https://doi.org/10.1371/journal.pone.0117909

  • Pletcher JM, Horak IG, de Vos V, Boomker J (1988) Hepatic lesions associated with Cooperioides hepaticae (Nematoda: Trichostrongyloidea) infection in impala (Aepyceros melampus) of the Kruger National Park. J Wildl Dis 24:650–655

    Article  PubMed  CAS  Google Scholar 

  • Poulin R (1997) Species richness of parasite assemblages: evolution and patterns. Ann Rev Ecol Syst 28:341–358

    Article  Google Scholar 

  • Poulin R, Guégan JF (2000) Nestedness, anti-nestedness, and the relationship between prevalence and intensity in ectoparasite assemblages of marine fish: a spatial model of species coexistence. Int J Parasitol 30:1147–1152

    Article  PubMed  CAS  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Reinecke RK (1983) Veterinary Helminthology. Butterworth Publishers, Durban

    Google Scholar 

  • Ruiz-Fons F, Acevedo P, Sobrino R, Vicente J, Fierro Y, Fernández-de-Mera IG (2013) Sex-biased differences in the effects of host individual, host population and environmental traits driving tick parasitism in red deer. Front Cell Infect Microbiol 3(23):12

    Google Scholar 

  • Runghen R, Poulin R, Monlleó-Borrull C, Llopis-Belenguer C (2021) Network analysis: ten years shining light on host–parasite interactions. Trends Parasitol 37:445–455

    Article  PubMed  Google Scholar 

  • Rynkiewicz EC, Pedersen AB, Fenton A (2015) An ecosystem approach to understanding and managing within-host parasite community dynamics. Trends Parasitol 31:212–221

    Article  PubMed  Google Scholar 

  • Rynkiewicz EC, Fenton A, Pedersen AB (2019) Linking community assembly and structure across scales in a wild mouse parasite community. Ecol Evol 9:13752–13763

    Article  PubMed  PubMed Central  Google Scholar 

  • Sachs R, Rack G, Woodford MH (1973) Observations on pentastomid infestation of East African game animals. Bull Epizoot Dis Afr 21:401–409

    PubMed  CAS  Google Scholar 

  • Sambon LW (1922) A synopsis of the family Linguatulidae. J Trop Med Hyg 25:188–428

    Google Scholar 

  • Santoro M, Kinsella JM, Galiero G, Uberti BD, Aznar FJ (2012) Helminth community structure in birds of prey (Accipitriformes and Falconiformes) in southern Italy. J Parasitol 98:22–29. https://doi.org/10.1645/GE-2924.1

    Article  PubMed  Google Scholar 

  • Shamsi S, Halajian A, Barton DP, Zhu X, Smit WJ, Roux F, Luus-Powell WJ (2020) Occurrence and characterisation of tongue worms, Linguatula spp., in South Africa. Int J Parasitol: Parasites Wildl 11:268–281

    Google Scholar 

  • Sitko J, Heneberg P (2015) Composition, structure and pattern of helminth assemblages associated with central European herons (Ardeidae). Parasitol Int 64:100–112. https://doi.org/10.1016/j.parint.2014.10.009

    Article  PubMed  Google Scholar 

  • Skinner JD, Chimimba CT (2005) The mammals of the Southern African subregion, 3rd edn. Cambridge University Press, Cape Town, South Africa

    Book  Google Scholar 

  • Spickett A, van der Mescht L, Junker K, Krasnov BR, Haukisalmi V, Matthee S (2019) Beta diversity of gastrointestinal helminths in two closely related South African rodents: species and site contributions. Parasitol Res 118:2863–2875

    Article  PubMed  Google Scholar 

  • Tompkins DM, Parish DM, Hudson PJ (2002) Parasite-mediated competition among red-legged partridges and other lowland gamebirds. J Wildl Mgmt 66:445–450. https://doi.org/10.2307/3803177

    Article  Google Scholar 

  • Verster A (1969) A taxonomic revision of the genus Taenia Linnaeus, 1758 s. str. Onderstepoort J Vet Res 36:3–58

    PubMed  CAS  Google Scholar 

  • Walker JG, Plein M, Morgan ER, Vesk PA (2017) Uncertain links in host–parasite networks: lessons for parasite transmission in a multi-host system. Philos Trans Royal Soc B: Biol Sci. 372(1719):20160095

    Article  Google Scholar 

  • Wirsing AJ, Azevedo FCC, Larivière S, Murray DL (2007) Patterns of gastrointestinal parasitism among five sympatric prairie carnivores: are males reservoirs? J Parasitol 93:504–510

    Article  PubMed  Google Scholar 

  • Zuk M, McKean KA (1996) Sex differences in parasite infections: patterns and processes. Int J Parasitol 26:1009–1024

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KJ and BRK conceived the study. JB and IGH collected the material and identified the parasites. BRK analyzed data. KJ and BRK drafted the manuscript. All authors participated in finalizing the manuscript.

Corresponding author

Correspondence to Kerstin Junker.

Ethics declarations

Ethics approval

All applicable institutional, national, and international guidelines for the care and use of animals were followed.

Conflicts of interest

The authors declare no competing interests.

Additional information

Handling Editor: Julia Walochnik

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key findings

• Helminth parasite communities of nyalas are moderately species rich and mainly composed of directly transmitted parasites.

• Host age is more important than host sex in determining community and network structure.

• Environmental conditions influence helminth transmission and cause local variation of infection patterns.

• Data from different sites should not be pooled for host-parasite network analyses as this could mask locality specific trends.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Supplementary file2 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junker, K., Boomker, J., Horak, I.G. et al. Impact of host sex and age on the diversity of endoparasites and structure of individual-based host-parasite networks in nyalas (Tragelaphus angasii Angas) from three game reserves in KwaZulu-Natal province, South Africa. Parasitol Res 121, 3249–3267 (2022). https://doi.org/10.1007/s00436-022-07653-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-022-07653-x

Keywords

Navigation