Skip to main content
Log in

Eye to eye: classification of conjunctival sac polystomes (Monogenea: Polystomatidae) revisited with the description of three new genera Apaloneotrema n. g., Aussietrema n. g. and Fornixtrema n. g.

  • Genetics, Evolution, and Phylogeny - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Polystomes (Monogenea: Polystomatidae) of freshwater turtles are currently represented by five genera, namely Neopolystoma, Polystomoides, Polystomoidella, Uropolystomoides and Uteropolystomoides. These parasites can infect the urinary, oral and/or the conjunctival sac systems of their hosts, showing strict site specificity. A recent phylogenetic study showed that the two most diverse genera within chelonian polystomes, i.e. Neopolystoma and Polystomoides, are not monophyletic. Furthermore, polystomes infecting the conjunctival sacs of their host, except for one species, formed a robust lineage. A fusiform egg shape has been reported for conjunctival sac polystomes and it was assumed that this characteristic could be a good character for the systematics of polystomes. Our objective in the present work was, therefore, to study more in depth the morphology of polystomes collected from the conjunctival sacs of chelonians to find characters defining a putative new genus. To achieve this objective, more specimens were collected in 2018 and 2019 from turtles sampled in North Carolina and Florida (USA) to extend taxon sampling for the phylogenetic analysis. Morphological characters of relevant polystome specimens were re-examined from several collections from Asia, Australia, Europe, South Africa, South America and North America. Based on a Bayesian tree inferred from the analysis of four concatenated genes, namely 12S, 18S, 28S and COI, polystomes found in the conjunctival sacs were grouped in three distinct lineages, the first one including a single species infecting an Australian pleurodire turtle; the second one including eleven species infecting cryptodire turtles of South America, North America and Asia; and the last one including a single species infecting a softshell cryptodire turtle of North America. Based on observations of live specimens by Dr. Sylvie Pichelin and our morphological analysis, the conjunctival sac polystomes from Australian turtles are small, cannot extend their body significantly, have a spherical ovary and egg, have a large genital bulb and possess latero-ventral vaginae at the level of the testis. Based on observations of live specimens and morphological analysis of whole mounted specimens, polystomes of the second lineage share the following morphological characteristics: the ability to stretch out and double their length, a long oval ovary, a separate egg-cell-maturation-chamber, fusiform to diamond-shaped eggs with acute tips, small genital bulb and vaginae peripheral on the side of the body at the level of the testis. The polystome species of the third lineage occupies a basal position, has the ability to stretch out and possess an elongated ovary, a large fusiform egg with rounded tips, a small genital bulb and small latero-ventral vaginae at the level of the ovary. These three distinct conjunctival sac polystome lineages are herein described as separate new genera, Aussietrema, Fornixtrema and Apaloneotrema, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aisien M, Du Preez LH (2009) Redescription of Polystoma africanum (Polystomatidae Monogenea). Zootaxa 2095:37–46

    Google Scholar 

  • Arafa SZ, El-Naggar MM, Kearn G (2014) On some ultrastructural features of the reproductive system of the monogenean parasite Macrogyrodactylus congolensis from Clarias gariepinus inhabiting the River Nile in Egypt. Acta Parasitol 59:238–246

    PubMed  Google Scholar 

  • Badets M, Verneau O (2009) Origin and evolution of alternative developmental strategies in amphibious sarcopterygian parasites (Platyhelminthes, Monogenea, Polystomatidae). Org Divers Evol 9:155–164

    Google Scholar 

  • Badets M, Whittington I, Lalubin F, Allienne J-F, Maspimby J-L, Bentz S, Du Preez LH, Barton D, Hasegawa H, Tandon V, Imkongwapang R, Ohler A, Combes C, Verneau O (2011) Correlating early evolution of parasitic platyhelminths to Gondwana breakup. Syst Biol 60:762–781

    PubMed  Google Scholar 

  • Bentz S, Leroy S, Du Preez LH, Mariaux J, Vaucher C, Verneau O (2001) Origin and evolution of African Polystoma (Monogenea: Polystomatidae) assessed by molecular methods. Int J Parasitol 31:697–705

    CAS  PubMed  Google Scholar 

  • Bentz S, Sinnappah-Kang ND, Lim L-HS, Lebedev B, Combes C, Verneau O (2006) Historical biogeography of amphibian parasites, genus Polystoma (Monogenea: Polystomatidae). J Biogeogr 33:742–749

    Google Scholar 

  • Bourgat R, Murith D (1980) Polystoma lamottei n. sp. et P. aeschlimanni n. sp., deux polystomes (Monogènes) de la même espèce d'amphibien: Ptychadena pumilio (Boulenger, 1920). Z Parasitenkd 62:293–301

    Google Scholar 

  • Cable J, Harris PD (2002) Gyrodactylid developmental biology: historical review, current status and future trends. Int J Parasitol 32:255–280

    CAS  PubMed  Google Scholar 

  • Cable J, Harris PD, Tinsley RC (1996) Ultrastructural adaptations for viviparity in the female reproductive system of gyrodactylid monogeneans. Tissue Cell 28:515–526

    CAS  PubMed  Google Scholar 

  • Du Preez LH, Delport M (2015) A new polystomatid (Monogenea: Polystomatidae) from the mouth of the North American freshwater turtle Pseudemys nelsoni. ZooKey 539:1–9

    Google Scholar 

  • Du Preez LH, Kok DJ (1992) Syntopic occurrence of new species of Polystoma and Metapolystoma (Monogenea: Polystomatidae) in Ptychadena porosissima in South Africa. Syst Parasitol 22:141–150

    Google Scholar 

  • Du Preez LH, Kok DJ (1995) Polystomatidae (Monogenea) of southern African Anura: Polystoma claudecombesi n. sp. parasitic in Rana angolensis Bocage, 1866. Syst Parasitol 30:223–231

    Google Scholar 

  • Du Preez LH, Lim LHS (2000) Neopolystoma liewi sp. n. (Monogenea: Polystomatidae) from the eye of the Malayan box turtle (Cuora amboinensis). Folia Parasitol 47:11–16

    Google Scholar 

  • Du Preez LH, Moeng IA (2004) Additional morphological information on Oculotrema hippopotami Stunkard 1924 (Monogenea: Polystomatidae) parasitic on the African hippopotamus. Afr Zool 39:225–233

    Google Scholar 

  • Du Preez LH, Morrison C (2012) Two new polystomes (Monogenea: Polystomatidae) from the eyes of North American freshwater turtles. Zootaxa 3392:47–59

    Google Scholar 

  • Du Preez LH, Kok DJ, Seaman MT (1997) Host recognition of polystome oncomiracidia (Polystomatidae: Monogenea) in contact with natural and substitute hosts. Afr J Zool 111:47–55

    Google Scholar 

  • Du Preez LH, Vaucher C, Mariaux JP (2002) Polystomatidae (Monogenea) of Southern African Anura: Polystoma dawiekoki n. sp. parasitic in Ptychadena anchietae (Bocage, 1867). Syst Parasitol 52:35–41

    PubMed  Google Scholar 

  • Du Preez LH, Badets M, Héritier L, Verneau O (2017) Tracking platyhelminth parasite diversity from freshwater turtles in French Guiana: first report of Neopolystoma Price, 1939 (Monogenea: Polystomatidae) with the description of three new species. Parasit Vectors 10:53

    PubMed  PubMed Central  Google Scholar 

  • Gremigni V (1983) Platyhelminthes-Turbellaria. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates, Vol. 1 (Oogenesis, oviposition, and oosorption). Wiley, Chichester, pp 67–107

    Google Scholar 

  • Harris PD (1983) The morphology and life-cycle of the oviparous Oögyrodactylus farlowellae gen. et sp. nov. (Monogenea Gyrodactylidea). Parasitol 87:405–420

    Google Scholar 

  • Héritier L, Badets M, Du Preez LH, Aisien MS, Lixian F, Combes C, Verneau O (2015) Evolutionary processes involved in the diversification of chelonian and mammal polystomatid parasites (Platyhelminthes, Monogenea, Polystomatidae) revealed by palaeoecology of their hosts. Mol Phylogenet Evol 92:1–10

    PubMed  Google Scholar 

  • Hori I (1982) An ultrastructural study of the chromatoid body in planarian regenerative cells. J Electron Microsc 31:63–72

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    CAS  PubMed  Google Scholar 

  • Humason GL (1979) Animal tissue techniques, 4th edn. W.H. Freeman & Co, San Francisco

    Google Scholar 

  • Jones MKJ, Ernst I, Whittington ID (1997) Variation in the ECFR of Gyrodactylus kobayashii Hukuda, 1940 (Monogenea: Gyrodactylidae). Int J Parasitol 27:507–516

    CAS  PubMed  Google Scholar 

  • Kathariner L (1904) Ueber die Entwicklung von Gyrodactylus elegans. Nrdm Zool Jahrb 7:519–551

    Google Scholar 

  • Kearn GC (1998) Parasitism and the Platyhelminths. Chapman and Hall, London

    Google Scholar 

  • Kok DJ, du Preez LH (1989) Polystoma australis (Monogenea): development and reproduction in neotenic parasites. S Afr J Zool 24:225–230

    Google Scholar 

  • Kritsky DC (1971) Studies on the fine structure of the monogenetic trematode, Gyrodactylus eucaliae Ikezaki and Hoffman, 1957, Unpublished PhD thesis, University of Illinois, Urbana, IL.

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetic Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Littlewood DTJ, Rohde K, Clough KA (1997) Parasite speciation within or between host species? Phylogenetic evidence from site-specific polystome monogeneans. Int J Parasitol 27:1289–1297

    CAS  PubMed  Google Scholar 

  • Malmberg G (1957) Om förekomsten av Gyrodactylus på svenka fiskar. Skrifter utgivna av Södra Sveriges Fiskeriförening, Årsskrift 1956:19–76 (In Swedish with summary in English)

    Google Scholar 

  • Moeng IA, Kruger J, Cooper S, Du Preez LH (1998) Unique musculature found in Oculotrema hippopotami (Monogenea: Polystomatidae). Mic Soc S Afr 28:83

    Google Scholar 

  • Morrison C, Du Preez L (2011) Turtle polystomes of the world. Neopolystoma, Polystomoidella & Polystomoides, VDM Verlag Dr. Muller, Saarbrücken.

  • Page RDM (1996) Tree View: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358. https://doi.org/10.1093/bioinformatics/12.4.357

    Article  CAS  PubMed  Google Scholar 

  • Petzold A, Vargas-Ramirez M, Kehlmaier C, Vamberger M, Branch WR, Du Preez L, Hofmeyr MD, Meyer L, Schleicher A, Široky P, Fritz U (2014) A revision of African helmeted terrapins (Testudines: Pelomedusidae: Pelomedusa), with descriptions of six new species. Zootaxa 3795:523–548

  • Pichelin S (1995) The taxonomy and biology of the Polystomatidae (Monogenea) in Australian freshwater turtles (Chelidae, Pleurodira). J Nat Hist 29:1345–1381

    Google Scholar 

  • Platt TR (2000a) Helminth parasites of the western painted turtle, Chrysemys picta belli (Gray), including Neopolystoma elizabethae n. sp. (Monogenea: Polystomatidae), a parasite of the conjunctival sac. J Parasitol 86:815–818

    CAS  PubMed  Google Scholar 

  • Platt TR (2000b) Neopolystoma fentoni n. sp. (Monogenea: Polystomatidae) a parasite of the conjunctival sac of freshwater turtles in Costa Rica. M I Oswaldo Cruz 95:833–837

    CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    CAS  PubMed  Google Scholar 

  • Price EW (1939) North American monogenetic trematodes. IV. The family Polystomatidae (Polystomatoidea). Proc Helminthol Soc Wash 6:80–94

    Google Scholar 

  • Sinnappah ND, Lim LHS, Rohde K, Tinsley R, Combes C, Verneau O (2001) A paedomorphic parasite associated with a neotenic amphibian host: phylogenetic evidence suggests a revised systematic position for Sphyranuridae within anuran and turtle Polystomatoineans. Mol Phylogenet Evol 18:189–201

    CAS  PubMed  Google Scholar 

  • Strelkov YA (1950) A new species of monogenetic trematode from Amyda sinensis. Dokl Akad Nauk SSSR Ser Biol 74:159–162 (In Russian.)

    Google Scholar 

  • Stunkard HW (1917) Studies on North American Polystomidae, Aspidogastridae, and Paramphistomidae, Ill. Biol Monogr 3:283–395

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tinsley RC, Tinsley MC (2016) Tracing ancient evolutionary divergence in parasites. Parasitol 143:1902–1916

    Google Scholar 

  • Verneau O (2004) Origine et évolution des monogènes Polystomatidae, parasites d’amphibiens et de chéloniens d’eau douce. Habilitation à Diriger des Recherches. Université de Perpignan, Perpignan

    Google Scholar 

  • Verneau O, Bentz S, Sinnappah ND, Du Preez L, Whittington I, Combes C (2002) A view of early vertebrate evolution inferred from the phylogeny of polystome parasites (Monogenea: Polystomatidae). Proc R Soc Lond B Biol Sci 269:535–543

    Google Scholar 

  • Verneau O, Du Preez L, Badets M (2009a) Lessons from parasitic flatworms about evolution and historical biogeography of their vertebrate hosts. CR Biol 332:149–158

    Google Scholar 

  • Verneau O, Du Preez LH, Laurent VR, Raharivololoniaina L, Glaw F, Vences M (2009b) The double odyssey of Madagascan polystome flatworms leads to new insights on the origins of their amphibian hosts. Proc R Soc B Biol Sci 276:1575–1583

    CAS  Google Scholar 

  • Williams JB (1988) Ultrastructural studies on Kronborgia (Platyhelminthes: Fecampiidae): the oocyte of K. isopodicola, with comments on oocyte microvilli and chromatoid bodies. Int J Parasitol 19:207–216

    Google Scholar 

  • Yildirimhan HS, Du Preez LH, Verneau O (2012) Polystoma nacialtuneli n. sp. (Polystomatidae) from the Eastern Spadefoot, Pelobates syriacus (Pelobatidae) in Turkey. J Helminthol 86:104–112

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Jerry Johnson, Jamie Casteel and Jeremy Gaiger and other members of the Santa Fe River Turtle program in Florida; Kevin Smith of Davidson College, North Carolina; and Amira Chaabane, Ed Netherlands, Roman Svitin and Willie Landman of North-West University for technical assistance during fieldwork.

Availability of data and material

All material used in the study are in official collections and the collection of the authors.

Code availability

Not applicable

Funding

The research was supported through funding received from the South Africa National Research Foundation – France Protea program; North-West University, South Africa; and University of Perpignan, France.

Author information

Authors and Affiliations

Authors

Contributions

Both authors conducted the research, drafted the manuscript and produced the figures.

Corresponding author

Correspondence to Louis H. Du Preez.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest

Ethics approval

Ethical approval was obtained from the North-West University to document parasite diversity of turtles (NWU-00256-17-A5) and to euthanize turtles (NWU-00492-16-A5)

Consent to participate

Not applicable

Consent for publication

Results presented in this manuscript was generated by the authors.

Additional information

Section Editor: Christoph G. Grevelding

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article was registered in the Official Register of Zoological Nomenclature (ZooBank) as urn:lsid:zoobank.org:pub:96765083-AE2E-426E-BAED-F56CDE14F0C0. This article was published as an Online First article on the online publication date shown on this page. The article should be cited by using the doi number. This is the Version of Record

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du Preez, L.H., Verneau, O. Eye to eye: classification of conjunctival sac polystomes (Monogenea: Polystomatidae) revisited with the description of three new genera Apaloneotrema n. g., Aussietrema n. g. and Fornixtrema n. g.. Parasitol Res 119, 4017–4031 (2020). https://doi.org/10.1007/s00436-020-06888-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-020-06888-w

Keywords

Navigation