Skip to main content
Log in

Morphology and molecules resolve the identity and life cycle of an eye trematode, Philophthalmus attenuatus n. sp. (Trematoda: Philophthalmidae) infecting gulls in New Zealand

  • Immunology and Host-Parasite Interactions - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Trematodes of the genus Philophthalmus are cosmopolitan parasites that infect the eyes of birds and mammals. They have the potential to affect the survival of their hosts and a few cases of human philophthalmiasis have occurred worldwide. Adults of known Philophthalmus species have never been recorded from bird hosts in New Zealand, despite their cercarial stage being a focus of various studies. Here, we describe a new species of Philophthalmus infecting New Zealand red-billed and black-backed gulls, Philophthalmus attenuatus n. sp. It is distinguished from other marine species of Philophthalmus by its long, thin body shape, consistently longer vitelline field on the left, and its body reflexed at the ventral sucker. We use molecular methods to complete the life cycle of this species, matching it with the larval stage infecting the mud whelk, Zeacumantus subcarinatus, and present a preliminary cox1 phylogeny. In addition, we comment on the validity of some taxonomic characters used to differentiate species of this genus, discuss potential colonisation routes to New Zealand and comment on the potential for zoonotic infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Blasco-Costa I, Waters JM, Poulin R (2012) Swimming against the current: genetic structure, host mobility and the drift paradox in trematode parasites. Mol Ecol 21(1):207–217

    Article  PubMed  CAS  Google Scholar 

  • Bowles J, Hope M, Tiu WU, Xushian L, McManus DP (1993) Nuclear and mitochondrial genetic markers highly conserved between Chinese and Philippine Schistosoma japonicum. Acta Trop 55:217–229

    Article  PubMed  CAS  Google Scholar 

  • Ching HL (1961) The development and morphological variation of Philophthalmus gralli Matthis and Leger, 1910, with a comparison of species of Philophthalmus Loos, 1899. P Helm Soc Wash 28:130–138

    Google Scholar 

  • Dailey M, Ellin R, Parás (2005) First report of parasites from pinnipeds in the Galapagos Islands, Ecuador, with a description of a new species of Philophthalmus (Digenea: Philophthalmidae). J Parasitol 91(3):614–617

    Article  PubMed  CAS  Google Scholar 

  • Dissanaike AS, Bilimoria DP (1958) On an infection of a human eye with Philophthaltmus sp. in Ceylon. J Helminthol 32(3):115–118

    Article  PubMed  CAS  Google Scholar 

  • Dronen NO, Fried B (2008) Comparative study of the age classes of two species of Philophthalmus Loos, 1899 (Philophthalmidae: Philophthalminae). Comp Parasitol 75:12–23

    Article  Google Scholar 

  • Dronen NO, Penner LR (1975) Concerning Philophthalmus andersoni sp. n. (Trematoda: Philophthalmidae), another ocular helminth from birds which develops in a marine gastropod. U Connecticut Occ Pap. Biol Sci Ser 2:217–224

    Google Scholar 

  • Given AD, Mills JA, Baker AJ (2005) Molecular evidence for recent radiation in southern hemisphere masked gulls. Auk 122(1):268–279

    Article  Google Scholar 

  • Gutierrez Y, Grossnikiaus HE, Annable WL (1987) Human conjunctivitis caused by the bird parasite Philophthalmus. Am J Ophthalmol 104(4):417–419

    Article  PubMed  CAS  Google Scholar 

  • Heneberg P, Casero M, Waap H, Sitko J, Azevedo F, Těšínský M, Literák I (2018) An outbreak of philophthalmosis in Larus michahellis and Larus fuscus gulls in Iberian Peninsula. Parasitol Int 67(2):253–261

    Article  PubMed  Google Scholar 

  • Howell MJ (1965) Notes on a potential trematode parasite of man in New Zealand. Tuatara 13(3):182–184

    Google Scholar 

  • Howell MJ, Bearup AJ (1967) The life histories of two bird trematodes of the family Philophthalmidae. Proc Linn Soc NSW 92:182–194

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES. Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Kalthoff H, Janitschke K, Mravak S, Schopp W, Werner H (1981) Ein ausgereifter saugwurm der gattung Philophthalmus unter der Bindehaut des Menschen. Klin Monatsbl Augenh 179(11):373–375

    Article  CAS  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence date. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Keeney DB, King TM, Rowe DL, Poulin R (2009) Contrasting mtDNA diversity and population structure in a direct-developing marine gastropod and its trematode parasites. Mol Ecol 18:4591–4603

    Article  PubMed  Google Scholar 

  • Králová-Hromadová I, Špakulová M, Horáčková E, Turčeková L, Novobilský A, Beck R, Koudela B, Marinculić A, Rajský D, Pybus M (2001) Sequence analysis of ribosomal and mitochondrial genes of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae): intraspecific variation and differentiation from Fasciola hepatica. J Parasitol 94:58–67

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  PubMed  CAS  Google Scholar 

  • Lang Y, Weiss Y, Garzozi H, Gold D, Lengy J (1993) A first instance of human philophthalmosis in Israel. J Helminthol 67(2):107–111

    Article  PubMed  CAS  Google Scholar 

  • Leung TLF, Poulin R (2011) Small worms, big appetites; ratios of different functional morphs in relation to interspecific competition in trematode parasites. Int J Parasitol 41:1063–1068

    Article  PubMed  Google Scholar 

  • Leung TLF, Donald KM, Keeney DB, Koehler AV, Peoples RC, Poulin R (2009) Trematode parasites of Otago Harbour (New Zealand) soft-sediment intertidal ecosystems: life cycles, ecological roles and DNA barcodes. New Zeal J Mar Fresh Res 43:857–865

    Article  CAS  Google Scholar 

  • Literák I, Heneberg P, Sitko J, Wetzel EJ, Cardenas Callirgos JM, Čapek M, Valle Basto D, PapouŠek I (2013) Eye trematode infection in small passerines in Peru caused by Philophthalmus lucipetus an agent with a zoonotic potential spread by an invasive freshwater snail. Parasitol Int 62:390–396

    Article  PubMed  Google Scholar 

  • Lloyd MM, Poulin R (2012) Fitness benefits of a division of labour in parasitic trematode colonies with and without competition. Intl J Parasitol 42:939–946

    Article  Google Scholar 

  • Lloyd MM, Poulin R (2014) Multi-clone infections and the impact of intraspecific competition of trematode colonies with a division of labour. Parasitology 141(2):304–310

    Article  PubMed  Google Scholar 

  • Marković A (1939) Der erste fall von Philophthalmose beim Menschen. A Graefes Arch Ophthalmol 140(3):515–526

    Article  Google Scholar 

  • Martorelli SR, Fredensborg BL, Leung TLF, Poulin R (2008) Four trematode cercariae from the New Zealand intertidal snail Zeacumantus subcarinatus (Batillariidae). NZ J Zool 35:73–84

    Article  Google Scholar 

  • McGill AR (1943) Probable occurrence of the southern black-backed gull (Larus dominicanus) in Australia. Emu – Austral Ornithol 43(1):65–66

    Article  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments workshop (GCE). New Orleans, pp.1–8

  • Mimori T, Hirai H, Kifune T, Inada K (1982) Philophthalmus sp. (Trematoda) in a human eye. Am J Trop Med Hyg 31(4):859–861

    Article  PubMed  CAS  Google Scholar 

  • Miura O, Kuris AM, Torchin ME, Hechinger RF, Dunham EJ, Chiba S (2005) Molecular-genetic analyses reveal cryptic species of trematodes in the intertidal gastropod, Batellaria cumingi (Crosse). Int J Parasitol 35:793–801

    Article  PubMed  CAS  Google Scholar 

  • Mukaratirwa S, Hove T, Cindzi ZM, Maononga DB, Taruvinga M, Matenga E (2005) First report of an outbreak of the oriental eye-fluke, Philophthalmus gralli (Mathis & Leger 1910), in commercially reared ostriches (Struthio camelus) in Zimbabwe. Onderstepoort J Vet Res 72:203–206

    Article  PubMed  CAS  Google Scholar 

  • Neal AT, Poulin R (2012) Substratum preference of Philophthalmus sp. cercariae for cyst formation under natural and experimental conditions. J Parasitol 98:293–298

    Article  PubMed  Google Scholar 

  • Nollen PM, Kanev I (1995) The taxonomy and biology of philophthalmid eye flukes. In: Baker JR, Muller R, Rollinson D (eds) Adv Parasit. Academic Press, London, pp 205–269

    Google Scholar 

  • O’Dwyer K, Blasco-Costa I, Poulin R, Faltynkova A (2014) Four marine digenean parasites of Austrolittorina spp. (Gastropoda: Littorinidae) in New Zealand: morphological and molecular data. Syst Parasitol 89(2):133–152

    Article  PubMed  Google Scholar 

  • O’Dwyer K, Faltynkova A, Georgieva S, Kostadinova A (2015) An intergrative taxonomic investigation of the diversity of digenean parasites infecting the intertidal snail Austrolittorina unifasciata Gray, 1826 (Gastropoda: Littorinidae) in Australia. Parasitol Res 114(6):2381–2397

    Article  PubMed  Google Scholar 

  • Penner LR, Fried B (1963) Philophthalmus hegeneri sp. n., an ocular trematode from birds. J Parasitol 49:974–977

    Article  PubMed  CAS  Google Scholar 

  • Penner LR, Trimble JJ (1970) Philophthalmus larsoni sp. n., an ocular trematode from birds. U Connecticut Occ Pap Biol Sci 1:265–273

    Google Scholar 

  • Phillips BE, Páez-Rosas D, Flowers JR, Cullen JM, Law JM, Colitz C, Dereresienski D, Lohmann KJ, Lewbart GA (2018) Evaluation of the ophthalmic disease and histopathologic effects due to the ocular trematode Philophthalmus zalophi on juvenile Galapagos sea lions (Zalophus wollebaeki). J Zoo Wildlife Med 49(3):581–590

    Article  Google Scholar 

  • Powell AWB (1979) New Zealand mollusca. William Collins Publishers Ltd, Auckland

    Google Scholar 

  • Robertson CJR, Bell BD (1984) Seabird status and conservation in the New Zealand region. In: Croxall JP, Evans PGH, Schreiber RW (eds) Status and conservation of the world’s seabirds, ICBP Tech Pub No, vol 2. Princeton, Princeton University Press, pp 573–586

    Google Scholar 

  • Woehler E, Patterson TA, Bravington MV, Hobday AJ, Chambers LE (2014) Climate and competition in abundance trends in native and invasive Tasmanian gulls. Mar Ecol Prog Ser 511:249–263

    Article  Google Scholar 

Download references

Acknowledgments

We thank Olivia McPherson for her help with the dissections.

Funding

This research was indirectly funded by a grant from the Marsden Fund (Royal Society of New Zealand) and a grant from the University of Otago’s Zoology Department PBRF Research Enhancement Fund, both to Robert Poulin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerusha Bennett.

Ethics declarations

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Julia Walochnik

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, J., Presswell, B. Morphology and molecules resolve the identity and life cycle of an eye trematode, Philophthalmus attenuatus n. sp. (Trematoda: Philophthalmidae) infecting gulls in New Zealand. Parasitol Res 118, 1501–1509 (2019). https://doi.org/10.1007/s00436-019-06289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-019-06289-8

Keywords

Navigation