Skip to main content

Advertisement

Log in

Limit of detection of PCR/RFLP analysis of cytochrome oxidase II for the identification of genetic groups of Trypanosoma cruzi and Trypanosoma rangeli in biological material from vertebrate hosts

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Mixed infections with Trypanosoma cruzi and Trypanosoma rangeli and their different genetic groups occur frequently in vertebrate hosts and are difficult to detect by serology. In the present study, we evaluated the limit of detection of polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analysis of cytochrome oxidase II (COII) for the identification of genetic groups of these two parasites in blood and tissue from vertebrate hosts. Reconstitution experiments were performed using human blood (TcI/TcII and KP1+/KP1−) and mouse tissue (TcI/TcII). We tested blood from patients who were in the chronic phase of Chagas disease and tissue from animals that were experimentally infected with all possible combinations of six discrete typing units. In blood samples, T. cruzi and T. rangeli were detected when 5 parasites (pa) were present in the sample, and genetic groups were identified when at least 50 pa were present in the sample. T. cruzi alone could be detected with 1 pa and genotyped (TcI/TcII) with 2 pa. T. rangeli was detected with 2 pa and genotyped (KP+/KP1-) with 25 pa. The present method more readily detected TcII and KP1− in both admixtures and alone. In mouse tissue, TcI and TcII were detected with at least 25 pa. The analysis of blood samples from patients and tissue from animals that were experimentally infected revealed low parasite loads in these hosts, which were below the limit of detection of the present method and could not be genotyped. Our findings indicate that the performance of PCR/RFLP analysis of COII is directly related to the amount and proportion of parasites that are present in the sample and the genetic groups to which the parasites belong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abolis NG, Araújo SM, Toledo MJO, Fernandez MA, Gomes ML (2011) Trypanosoma cruzi I-III in southern Brazil causing individual and mixed infections in humans, sylvatic reservoirs and triatomines. Acta Trop 120:167–172

    Article  PubMed  Google Scholar 

  • Araújo SM, Guilherme ALF, Toledo MJO, Oliveira PJG, Silva JC, Gomes ML (1999) Biology of Trypanosoma cruzi strains isolated from chagasic patients from different geographic origins residing in northwestern region of the state of Paraná-Brazil. Acta Sci Biol Sci 21:229–235

    Google Scholar 

  • Burgos JM, Diez M, Vigliano C, Bisio M, Risso M, Duffy T, Cura C, Brusses B, Favaloro L, Leguizamon MS, Lucero RH, Laguens R, Levin MJ, Favaloro R, Schijman AG (2010) Molecular identification of Trypanosoma cruzi discrete typing units in end-stage chronic Chagas heart disease and reactivation after heart transplantation. Clin Infect Dis 51:485–495

    Article  PubMed  CAS  Google Scholar 

  • Caldas S, Caldas IS, Diniz LF, Lima WG, Oliveira RP, Cecílio AB, Ribeiro I, Talvani A, Bahia MT (2012) Real-time PCR strategy for parasite quantification in blood and tissue samples of experimental Trypanosoma cruzi infection. Acta Trop 123:170–177

    Article  PubMed  CAS  Google Scholar 

  • Campos RF, Magalhães JB, Reis EA, Reis MG, Andrade SG (2002) Sensitivity of polymerase chain reaction for detection of known aliquots of Trypanosoma cruzi in the blood of mice: an in vitro study. Rev Soc Bras Med Trop 35:487–490

    Article  PubMed  Google Scholar 

  • Cavalcanti DP, Shimada MK, Probst CM, Souto-Padrón TC, de Souza W, Goldenberg S, Fragoso SP, Motta MC (2009) Expression and subcellular localization of kinetoplast-associated proteins in the different developmental stages of Trypanosoma cruzi. BMC Microbiol 9:120. https://doi.org/10.1186/1471-2180-9-120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiurillo MA, Crisante G, Rojas A, Peralta A, Dias M, Guevara P, Añez N, Ramírez JL (2003) Detection of Trypanosoma cruzi and Trypanosoma rangeli infection by duplex PCR assay based on telomeric sequences. Clin Diagn Lab Immunol 10:775–779

    PubMed  PubMed Central  CAS  Google Scholar 

  • Coura JR, Fernandes O, Arboleda M, Barrett TV, Carrara N, Degrave W, Campbell DA (1996) Human infection by Trypanosoma rangeli in the Brazilian Amazon. Trans R Soc Trop Med Hyg 90:278–279

    Article  PubMed  CAS  Google Scholar 

  • Fernandes O, Santos SS, Cupolillo E, Mendonça B, Derre R, Junqueira AC, Santos LC, Sturm NR, Naiff RD, Barret TV, Campbell DA, Coura JR (2001) A mini-exon multiplex polymerase chain reaction to distinguish the major groups of Trypanosoma cruzi and T. rangeli in the Brazilian Amazon. Trans R Soc Trop Med Hyg 95:97–99

    Article  PubMed  CAS  Google Scholar 

  • Fraga J, Fernandez-Calienes A, Montalvo AM, Maes I, Dujardin JC, Van der Auwera G (2014) Differentiation between Trypanosoma cruzi and Trypanosoma rangeli using heat-shock protein 70 polymorphisms. Tropical Med Int Health 19:195–206

    Article  CAS  Google Scholar 

  • Gomes ML, Macedo AM, Vago AR, Pena SDJ, Galvão LMC, Chiari E (1998) Trypanosoma cruzi: optimization of polymerase chain reaction for detection in human blood. Exp Parasitol 88:28–33

    Article  PubMed  CAS  Google Scholar 

  • Gottdenker N, Chaves L, Calzada J, Peterson J, Santamaría A, Pineda V, Saldaña A (2016) Trypanosoma cruzi and Trypanosoma rangeli co-infection patterns in insect vectors vary across habitat types in a fragmented forest landscape. PAO 2:E10. https://doi.org/10.1017/pao.2016.9

    Article  Google Scholar 

  • Gruendling AP, Massago M, Teston AP, Monteiro WM, Kaneshima EN, Araújo SM, Gomes ML, Barbosa MD, Toledo MJ (2015) Impact of benznidazole on infection course in mice experimentally infected with Trypanosoma cruzi I, II, and IV. Am J Trop Med Hyg 92(6):1178–1189. https://doi.org/10.4269/ajtmh.13-0690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hernández C, Cucunubá Z, Flórez C, Olivera M, Valencia C, Zambrano P, León C, Ramírez JD (2016) Molecular diagnosis of Chagas disease in Colombia: parasitic loads and discrete typing units in patients from acute and chronic phases. PLoS Negl Trop Dis 10(9):e0004997. https://doi.org/10.1371/journal.pntd.0004997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mantilla JC, Zafra GA, Macedo AM, González CI (2010) Mixed infection of Trypanosoma cruzi I and II in a Colombian cardiomyopathic patient. Hum Pathol 41(4):610–613. https://doi.org/10.1016/j.humpath.2009.11.005

    Article  PubMed  Google Scholar 

  • Marquez DS, Ramírez LE, Moreno J, Pedrosa AL, Lages-silva E (2007) Trypanosoma rangeli: RAPD-PCR and LSSP-PCR analyses of isolates from southeast Brazil and Colombia and their relation with KPI minicircles. Exp Parasitol 117(1):35–42

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto CT, Gomes ML, Marangon AV, Araújo SM, Bahia MT, Martins-Filho AO, Lana M, Toledo MJO (2008) Usefulness of the polymerase chain reaction for monitoring cure of mice infected with different Trypanosoma cruzi clonal genotypes following treatment with benznidazole. Exp Parasitol 120:45–49

    Article  PubMed  CAS  Google Scholar 

  • Moraes MH, Guarneri AA, Girardi FP, Rodrigues JB, Eger I, Tyler KM, Steindel M, Grisard EC (2008) Different serological cross-reactivity of Trypanosoma rangeli forms in Trypanosoma cruzi-infected patients sera. Parasit Vectors 8:1–20

    Google Scholar 

  • Murthy VK, Dibbern KM, Campbell DA (1992) PCR amplification of mini-exon genes differentiates Trypanosoma cruzi from Trypanosoma rangeli. Mol Cell Probes 6(3):237–243

    Article  PubMed  CAS  Google Scholar 

  • Naves LL, da Silva MV, Fajardo EF, da Silva RB, De Vito FB, Rodrigues V, Lages-Silva E, Ramírez LE, Pedrosa AL (2017) DNA content analysis allows discrimination between Trypanosoma cruzi and Trypanosoma rangeli. PLoS One 12(12):e0189907. https://doi.org/10.1371/journal.pone.0189907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nozaki T, Dvorak JÁ (1991) Trypanosoma cruzi: flow cytometric analysis of developmental stage differences in DNA. J Protozool 38:234–243

    Article  PubMed  CAS  Google Scholar 

  • Parada C, Villalba J, Alvarez M, Puig N, Planelles D, Ramada C, Montoro J, Roig R (2010) Trypanosoma rangeli in a blood donor at the Valencian Blood Transfusion Centre. Vox Sang 99:193–194

    Article  PubMed  CAS  Google Scholar 

  • Pavia PX, Vallejo GA, Montilla M, Nicholls RS, Puerta CJ (2007) Detection of Trypanosoma cruzi and Trypanosoma rangeli infection in triatomine vectors by amplification of the histone H2A/SIRE and the sno-RNA-C11 genes. Rev Inst Med Trop Sao Paulo 49:23–30

    Article  PubMed  Google Scholar 

  • Pineda V, Montalvo E, Alvarez D, Santamaría AM, Calzada JE, Saldaña A (2008) Feeding sources and trypanosome infection index of Rhodnius pallescens in a Chagas disease endemic area of Amador County, Panamá. Rev Inst Med Trop Sao Paulo 2:113–116

    Article  Google Scholar 

  • Pinto CM, Kalko EK, Cottontail I, Wellinghausen N, Cottontail VM (2012) TcBat a bat-exclusive lineage of Trypanosoma cruzi in the Panama canal zone:with comments on its classification and the use of the 18S rRNA gene forlineage identification. Infect Genet Evol 2:1328–1332

    Article  CAS  Google Scholar 

  • Ramirez LE, Lages-Silva E, Alvarenga-Franco F, Matos A, Vargas N, Fernandes O, Zingales B (2002) High prevalence of Trypanosoma rangeli and Trypanosoma cruzi in opossums and triatomids in a formerly-endemic area of Chagas disease in Southeast Brazil. Acta Trop 84:189–198

    Article  PubMed  Google Scholar 

  • Ramírez JD, Guhl F, Rendón LM, Rosas F, Marin-Neto JA, Morillo CA (2010) Chagas cardiomyopathy manifestations and Trypanosoma cruzi genotypes circulating in chronic Chagasic patients. PLoS Negl Trop Dis 4(11):e899. https://doi.org/10.1371/journal.pntd.0000899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rozas M, Botto-Mahan C, Coronado X, Ortiz S, Cattan PE, Solari A (2007) Coexistence of Trypanosoma cruzi genotypes in wild and periodomestic mammals in Chile. Am J Trop Med Hyg 77:647–653

    Article  PubMed  CAS  Google Scholar 

  • Sá ARN, Steindel M, Demeu LM, Lückemeyer DD, Grisard EC, Neto QA, Araújo SM, Toledo MJ, Gomes ML (2013) (2013) Cytochrome oxidase subunit 2 gene allows simultaneous detection and typing of Trypanosoma rangeli and Trypanosoma cruzi. Parasit Vectors

  • Sá ARN, Dias GB, Kimoto KY, Steindel M, Grisard EC, Toledo MJ, Gomes ML (2016) Genotyping of Trypanosoma cruzi DTUs and Trypanosoma rangeli genetic groups in experimentally infected Rhodnius prolixus by PCR-RFLP. Acta Trop 156:115–121. https://doi.org/10.1016/j.actatropica.2016.01.006

    Article  PubMed  CAS  Google Scholar 

  • Saldaña A, Samudio F, Miranda A, Herrera LM, Saavedra SP, Cáceres L, Bayard V, Calzada JE (2005) Predominance of Trypanosoma rangeli infection in children from a Chagas disease endemic area in the west-shore of the Panama canal. Mem Inst Oswaldo Cruz 100(7):729–731

    Article  PubMed  Google Scholar 

  • Saldaña A, Pineda V, Martinez I, Santamaria G, Santamaria AM, Miranda A, Calzada JE (2012) A new endemic focus of Chagas disease in the northern region of Veraguas Province, Western Half Panama, Central America. PLoS One 7:e34657. https://doi.org/10.1371/journal.pone.0034657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silva EL (2017) Relação entre o número de parasitos e a capacidade de detecção e tipagem das DTU de Trypanosoma cruzi pelos protocolos de PCR correntemente utilizados Dissertation, State University of Maringá

  • Solari A, Campillay R, Ortíz S, Wallace A (2001) Identification of Trypanosoma cruzi genotypes circulating in Chilean chagasic patient. Exp Parasitol 97:226–233

    Article  PubMed  CAS  Google Scholar 

  • Sousa MA (2014) On opportunist infections by Trypanosoma lewisi in humans and its differential diagnosis from T. cruzi and T. rangeli. Parasitol Res 113(12):4471–4475

    Article  PubMed  Google Scholar 

  • Souto RP, Vargas N, Zingales B (1999) Trypanosoma rangeli: discrimination from Trypanosoma cruzi based on a variable domain from the large subunit ribosomal RNA gene. Exp Parasitol 91:306–314

    Article  PubMed  CAS  Google Scholar 

  • Spitzner FL, Freitas JM, Macedo AM, Toledo MJO, Araújo SM, Prioli AJ, Gomes ML (2007) Trypanosoma cruzi-triatomine associations and the presence of mixed infections in single triatomine bugs in Paraná state, Brazil. Acta Parasitol 52:74–81

    Article  CAS  Google Scholar 

  • Stoco PH, Miletti LC, Picozzi K, Steindel M, Grisard EC (2017) Other major trypanosomiasis. In: Marcondes C (ed) Arthropod Borne Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-13884-8_19

    Chapter  Google Scholar 

  • Uda-Shimoda CF, Colli CM, Pavanelli MF, Falavigna-Guilherme AL, Gomes ML (2014) Simplified protocol for DNA extraction and amplification of two molecular markers to detect and type Giardia duodenalis. Diagn Microbiol Infect Dis 78:53–58

    Article  PubMed  CAS  Google Scholar 

  • Vallejo GA, Guhl F, Chiari E, Macedo AM (1999) Species specific detection of Trypanosoma cruzi and Trypanosoma rangeli in vector and mammalian hosts by polymerase chain reaction amplification of kinetoplast minicircle DNA. Acta Trop 72:203–212

    Article  PubMed  CAS  Google Scholar 

  • Vallejo GA, Guhl F, Carranza JC, Lozano LE, Sánchez JL, Jaramillo JC, Gualtero D, Castañeda N, Silva JC, Steindel M (2002) kDNA markers define two major Trypanosoma rangeli lineages in Latin-America. Acta Trop 81:77–82

    Article  PubMed  CAS  Google Scholar 

  • Westenberger SJ, Cerqueira GC, El-Sayed NM, Zingales B, Campbell DA, Sturm NR (2006) Trypanosoma cruzi mitochondrial maxicircles display species- and strain-specific variation and a conserved element in the non-coding region. BMC Genomics 7:60. https://doi.org/10.1186/1471-2164-7-60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • WHO (World Health Organization, Geneva, Switzerland): Chagas disease (American trypanosomiasis) March 2017, Fact sheet No. 340. Available on: http://www.who.int/mediacentre/factsheets/fs340/en/

  • Xavier SC, Roque AL, Bilac D, Araújo VA, Costa Neto SF, Lorosa ES, da Silva LF, Jansen AM (2014) Distantiae transmission of Trypanosoma cruzi: a new epidemiological feature of acute Chagas disease in Brazil. PLoS Negl Trop Dis 8:e2878. https://doi.org/10.1371/journal.pntd.0002878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, Fernandes O, Guhl F, Lages-Silva E, Macedo AM, Machado CR, Miles MA, Romanha AJ, Sturm NR, Tibayrenc M, Schijman AG (2009) Second satellite meeting: a new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104:1051–1054

    Article  PubMed  CAS  Google Scholar 

  • Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, Teixeira MM, Schijman AG, Llewellyn MS, Lages-Silva E, Machado CR, Andrade SG, Sturm NR (2012) The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 12:240–253

    Article  PubMed  Google Scholar 

Download references

Funding

This work was funded by Conselho Nacional de Desenvolvimento Científico e Tecnólogico (CNPq; 472969/2012-9) and Fundação Araucária (37824/2013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amanda Regina Nichi Sá or Mônica Lúcia Gomes.

Ethics declarations

The experiments with human blood were approved by the Standing Committee on Ethics in Research with Humans (Comitê Permanente de Ética em Pesquisa com Seres Humanos [COPEP]) of the State University of Maringá (Universidade Estadual de Maringá [UEM]; protocol no. 012/2010). The experiments with animals were approved by the Committee of Ethical Conduct on the Use of Animals in Experimentation (Comitê de Conduta Ética no Uso de Animais em Experimentação [CEAE]) of UEM (protocol no. 076/2013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sá, A.R.N., Kimoto, K.Y., Steindel, M. et al. Limit of detection of PCR/RFLP analysis of cytochrome oxidase II for the identification of genetic groups of Trypanosoma cruzi and Trypanosoma rangeli in biological material from vertebrate hosts. Parasitol Res 117, 2403–2410 (2018). https://doi.org/10.1007/s00436-018-5928-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-5928-1

Keywords

Navigation