Skip to main content

Advertisement

Log in

The antidepressant clomipramine induces programmed cell death in Leishmania amazonensis through a mitochondrial pathway

  • Protozoology - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Despite many efforts, the currently available treatments for leishmaniasis are not fully effective. To discover new medications, drug repurposing arises as a promising strategy. We present data that supports the use of the antidepressant clomipramine against Leishmania amazonensis. The drug presented selective activity at micromolar range against both the parasite forms and stimulated nitric oxide production in host macrophages. Regarding the mechanism of action, clomipramine led parasites do mitochondrial depolarization, which coupled with the inhibition of trypanothione reductase induced strong oxidative stress in the parasites. The effects observed in promastigotes included lipoperoxidation, plasma membrane permeabilization, and apoptosis hallmarks (i.e., DNA fragmentation, phosphatidylserine exposure, and cell shrinkage). The mechanism of action in both parasitic forms was quite similar, but amastigotes also exhibited energetic stress, reflected by a reduction of adenosine triphosphate levels. Such differential effects might be attributable to the metabolic particularities of each form of the parasitic. Ultrastructural alterations of the endomembrane system and autophagy were also observed, possibly indicating an adaptive response to oxidative stress. Our results suggest that clomipramine interferes with the redox metabolism of L. amazonensis. In spite of the cellular responses to recover the cellular homeostasis, parasites underwent programmed cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andrews KT, Fisher G, Skinner-Adams TS (2014) Drug repurposing and human parasitic protozoan diseases. Int J Parasitol Drugs Drug Resist 4:95–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Barral A, Pedral-Sampaio D, Grimaldi-Júnior G, Momen H, McMahon-Pratt D, Ribeiro de Jesus A, Almeida R, Badaro R, Barral-Netto M, Carvalho EM (1991) Leishmaniasis in Bahia, Brazil: evidence that Leishmania amazonensis produces a wide spectrum of clinical disease. Am J Trop Med Hyg 44:536–546

    Article  PubMed  CAS  Google Scholar 

  • Benson TJ, McKie JH, Garforth J, Borges A, Fairlamb A, Douglas KT (1992) Rationally designed selective inhibitors of trypanothione reductase. Phenothiazines and related tricyclics as lead structures. Biochem J 286:9–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berman JD, Dwyer DM, Wyler DJ (1979) Multiplication of Leishmania in human macrophages in vitro. Infect Immun 26:375–379

    PubMed  PubMed Central  CAS  Google Scholar 

  • Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelárová H, Meijer AJ (1997) The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 243:240–246

    Article  PubMed  CAS  Google Scholar 

  • Bringaud F, Rivière L, Coustou V (2006) Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol 149:1–9

    Article  PubMed  CAS  Google Scholar 

  • Desoti VC, Lazarin-Bidóia D, Martins-Ribeiro F, Martins SC, Rodrigues JHS, Ueda-Nakamura T et al (2015) The combination of vitamin K3 and vitamin C has synergic activity against forms of Trypanosoma cruzi through a redox imbalance process. PLoS One 10:1–23

    Google Scholar 

  • Duszenko M, Figarella K, Macleod ET, Welburn SC (2006) Death of a trypanosome: a selfish altruism. Trends Parasitol 22:536–542

    Article  PubMed  Google Scholar 

  • El Mansari M, Blier P (2006) Mechanisms of action of current and potential pharmacotherapies of obsessive-compulsive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 30:362–373

    Article  CAS  Google Scholar 

  • Field MC, Carrington M (2009) The trypanosome flagellar pocket. Nat Rev Microbiol 7:775–786

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson S, Abrams JM, Adam D et al (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58–73

    Article  PubMed  CAS  Google Scholar 

  • Georgiadou SP, Makaritsis KP, Dalekos GN (2015) Leishmaniasis revisited: current aspects on epidemiology, diagnosis and treatment. J Transl Int Med 3:43–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammond DJ, Cover B, Gutteridge WE (1984) A novel series of chemical structures active in vitro against trypomastigote form of Trypanosoma cruzi. Trans R Soc Trop Med Hyg 78:91–95

    Article  PubMed  CAS  Google Scholar 

  • Hicks SW, Machamer CE (2005) Golgi structure in stress sensing and apoptosis. Biochim Biophys Acta 1744:406–414

    Article  PubMed  CAS  Google Scholar 

  • Higgins SC, Pilkington GJ (2010) The in vitro effects of tricyclic drugs and dexamethasone on cellular respiration of malignant glioma. Anticancer Res 398:391–397

    Google Scholar 

  • Holzmuller P, Bras-Gonçalves R, Lemesre J (2006) Phenotypical characteristics, biochemical pathways, molecular targets and putative role of nitric oxide-mediated programmed cell death in Leishmania. Parasitology 132:19–32

    Article  CAS  Google Scholar 

  • Kaiser M, Mäser P, Tadoori LP, Loset JR, Brun R (2015) Antiprotozoal activity profiling of approved drugs: a starting point toward drug repositioning. PLoS One 10:1–16

    CAS  Google Scholar 

  • Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K, Adhihetty PJ, Adler SG, Agam G et al (2016) Guidelines for use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Lazarin-Bidóia D, Desoti VC, Ueda-Nakamura T, Dias Filho BP, Nakamura CV, Silva SO (2013) Further evidence of the trypanocidal action of eupomatenoid-5: confirmation of involvement of reactive oxygen species and mitochondria owing to a reduction in trypanothione reductase activity. Free Radic Biol Med 60:17–28

    Article  PubMed  CAS  Google Scholar 

  • Lorente SO, Rodrigues JCF, Jime C, Joyce-menekse M, Rodrigues C, Croft SL et al (2004) Novel azasterols as potential agents for treatment of leishmaniasis and trypanosomiasis. Antimicrob Agents Chemother 48:2937–2950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maag RS, Hicks SW, Machamer CE (2003) Death from within: apoptosis and the secretory pathway. Curr Opin Cell Biol 15:456–461

    Article  PubMed  CAS  Google Scholar 

  • McConville MJ, Saunders EC, Kloehn J, Dagley MJ (2015) Leishmania carbon metabolism in the macrophage phagolysosome-feast or famine? F1000Research 4:1–11

    Article  CAS  Google Scholar 

  • Menna-Barreto RFS, de Castro SL (2014) The double-edged sword in pathogenic trypanosomatids: the pivotal role of mitochondria in oxidative stress and bioenergetics. Biomed Res Int 2014:1–14

    Article  CAS  Google Scholar 

  • Menna-Barreto RFS, Corrêa JR, Cascabulho CM, Fernandes MC, Pinto V, Soares MJ et al (2009) Naphthoimidazoles promote different death phenotypes in Trypanosoma cruzi. Parasitology 136:499–510

    Article  PubMed  CAS  Google Scholar 

  • Moradin N, Descoteaux A, Beverley SM (2012) Leishmania promastigotes: building a safe niche within macrophages. Front Cell Infect Microbiol 2:1–7

    Article  CAS  Google Scholar 

  • Mukherjee S, Mukherjee B, Mukhopadhyay R, Naskar K, Sundar S, Dujardin JC et al (2012) Imipramine is an orally active drug against both antimony sensitive and resistant Leishmania donovani clinical isolates in experimental infection. PLoS Negl Trop Dis 6:1–15

    Article  CAS  Google Scholar 

  • Munos B (2009) Lessons from 60 years of pharmaceutical innovation. Nat Rev Drug Discov 8:959–968

    Article  PubMed  CAS  Google Scholar 

  • Okuno D, Lino R, Noji H (2011) Rotation and structure of FoF1-ATP synthase. J Biochem 149:655–664

    Article  PubMed  CAS  Google Scholar 

  • Pace D (2014) Leishmaniasis. J Inf Secur 69:10–18

    Google Scholar 

  • Padhy B, Gupta Y (2011) Drug repositioning: re-investigating existing drugs for new therapeutic indications. J Postgrad Med 57:153–160

    Article  PubMed  CAS  Google Scholar 

  • Proto WR, Coombs GH, Mottram JC (2012) Cell death in parasitic protozoa: regulated or incidental? Nat Rev Microbiol 11:58–66

    Article  PubMed  CAS  Google Scholar 

  • Rivarola HW, Bustamante JM, Presti SL, Fernández AR, Enders JE, Gea S et al (2005) Trypanosoma cruzi: chemotherapeutic effects of clomipramine in mice infected with an isolate obtained from an endemic area. Exp Parasitol 111:80–86

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues JHS, Stein J, Strauss M, Rivarola HW, Ueda-Nakamura T, Nakamura CV, Duszenko M (2016) Clomipramine kills Trypanosoma brucei by apoptosis. Int J Med Microbiol 306:196–205

    Article  CAS  Google Scholar 

  • Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, Zilberstein D (2007) Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J 22:590–602

    Article  PubMed  CAS  Google Scholar 

  • `Safiulina D, Veksler V, Zharkovsky A, Kaasik A (2006) Loss of mitochondrial membrane potential is associated with increase in mitochondrial volume: physiological role in neurones. J Cell Physiol 206:347–353

    Article  PubMed  CAS  Google Scholar 

  • Smirlis D, Duszenko M, Ruiz A, Scoulica E, Bastien P, Fasel N, Soteriadou K (2010) Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death. Parasit Vectors 3:107–132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi M, Shibata M, Niki E (2001) Estimation of lipid peroxidation of live cells using a fluorescent probe, diphenyl-1-pyrenylphosphine. Free Radic Biol Med 31(2):164–174

    Article  PubMed  CAS  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  PubMed  CAS  Google Scholar 

  • WHO (2018) Leishmaniasis. World Health Organization. http://www.who.int/mediacentre/factsheets/fs375/en/. Accessed 06 July 2018

  • Zilberstein D, Dwyer DM (1984) Antidepressants cause lethal disruption of membrane function in the human protozoan parasite Leishmania. Science 226:977–979

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all the staffs of the “Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos” and the “Complexo de Centrais de Apoio à Pesquisa (COMCAP-UEM)”.

Funding

This study was supported by grants of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), Financiadora de Estudos e Projetos (FINEP) and Programa de Núcleos de Excelência (PRONEX/Fundação Araucária).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celso Vataru Nakamura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Section Editor: Sarah Hendrickx

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Rodrigues, J.H., Miranda, N., Volpato, H. et al. The antidepressant clomipramine induces programmed cell death in Leishmania amazonensis through a mitochondrial pathway. Parasitol Res 118, 977–989 (2019). https://doi.org/10.1007/s00436-018-06200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-06200-x

Keywords

Navigation