Skip to main content
Log in

Haemosporidian prevalence and parasitaemia in the Black-throated sparrow (Amphispiza bilineata) in central-Mexican dryland habitats

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

To date it is not well-understood how seasonality and human-induced habitat change may affect haemosporidian prevalence and parasitaemia in bird hosts in dryland habitats. We compared haemosporidian prevalence and parasitaemia between habitat types, including Yucca-dominated scrublands (closed habitat) and creosotebush scrublands (open habitat), and between seasons, including non-breeding (dry) and breeding (wet) in the Black-throated sparrow (Amphispiza bilineata) at semi-arid scrublands of Central Mexico. This bird species has different habitat preferences in comparison to other, previously studied species in the region; it shows higher abundances in open than in closed habitats and avoids urban areas. Overall haemosporidian prevalence was 22.1%. Prevalence and parasitaemia were higher for Haemoproteus sp. (Parahaemoproteus sp.) than Plasmodium. Variation in haemoparasitism was not associated with habitat type. This response differs from the previously recorded response in other bird species in the region for which haemoparasitism increases with increasing habitat degradation. Seasonality seems to be the most important driver of parasite infection for this sparrow as prevalence and parasitaemia were higher during the breeding than the non-breeding season. Two new lineages of Haemoproteus sp. that had not been reported before in any avian species were found through molecular diagnosis. A high diversity of haemosporidian lineages is shared among sites. More study is needed to understand the mechanisms that associate parasitaemia, prevalence, and specific environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arriero E, Moreno J, Merino S, Martínez J (2008) Habitat effects on physiological stress response in nestling blue tits are mediated through parasitism. Physiol Biochem Zool Ecol Evol Approaches 81:195–203. doi:10.1086/524393

    Article  Google Scholar 

  • Astudillo VG, Hernández SM, Kistler WM, Boone SL, Lipp EK, Shrestha S, Yabsley MJ (2013) Spatial, temporal, molecular, and intraspecific differences of haemoparasite infection and relevant selected physiological parameters of wild birds in Georgia, USA. Int J Parasitol Parasites Wildl 2:178–189. doi:10.1016/j.ijppaw.2013.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrientos R, Valera F, Barbosa A, Carrillo CM, Moreno E (2014) Biogeography of haemo- and ectoparasites of an arid-land bird, the trumpeter finch. J Arid Environ 106:11–17. doi:10.1016/j.jaridenv.2014.03.005

    Article  Google Scholar 

  • Barton K (2015) MuMIn: Multi-model inference. R package version 1.15.1. Version 1:18. doi: citeulike:11961261

  • Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J stat Softw 67:1–48. doi:10.18637/jss.v067.i01

    Article  Google Scholar 

  • Beaudoin RL, Applegate JE, Davis DE, McLean RG (1971) A model for the ecology of avian malaria. J Wildl Dis 7:5–13. doi:10.7589/0090-3558-7.1.5

    Article  CAS  PubMed  Google Scholar 

  • Belo NO, Pinheiro RT, Reis ES, Ricklefs RE, Braga ÉM (2011) Prevalence and lineage diversity of avian haemosporidians from three distinct cerrado habitats in Brazil. PLoS OnePLoS One. doi:10.1371/journal.pone.0017654

  • Belo NO, Rodríguez-Ferraro A, Braga EM, Ricklefs RE (2012) Diversity of avian haemosporidians in arid zones of northern Venezuela. Parasitology 139:1021–1028. doi:10.1017/S003118201200039X

    Article  PubMed  Google Scholar 

  • Bennett GF, Montgomerie R, Seutin G (1992) Scarcity of Haematozoa in birds breeding on the Arctic tundra of North America. Condor 94:289–292. doi:10.2307/1368821

    Article  Google Scholar 

  • Bensch S, Stjernman M, Hasselquist D, Ostman O, Hansson B, Westerdahl H, Pinheiro RT (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc B Biol Sci 267:1583–1589. doi:10.1098/rspb.2000.1181

    Article  CAS  Google Scholar 

  • Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9:1353–1358. doi:10.1111/j.1755-0998.2009.02692.x

    Article  PubMed  Google Scholar 

  • Blanco G, Rodríguez-Estrella R, Merino S, Bertellotti M (2001) Effects of spatial and host variables on Hematozoa in white-crowned sparrows wintering in Baja California. J Wildl Dis 37:786–790. doi:10.7589/0090-3558-37.4.786

    Article  CAS  PubMed  Google Scholar 

  • Budria A, Candolin U (2014) How does human-induced environmental change influence host-parasite interactions? Parasitology 141:462–474. doi:10.1017/S0031182013001881

    Article  PubMed  Google Scholar 

  • Chapa-Vargas L, Mejia-Saavedra JJ, Monzalvo-Santos K, Puebla-Olivares F (2010) Blood lead concentrations in wild birds from a polluted mining region at villa de La Paz, San Luis Potosi, Mexico. J Environ Sci Health A Tox Hazard Subst Environ Eng 45:90–98. doi:10.1080/10934520903389242

    Article  CAS  PubMed  Google Scholar 

  • Chasar A, Loiseau C, Valkiūnas G, Iezhova T, Smith TB, Sehgal RNM (2009) Prevalence and diversity patterns of avian blood parasites in degraded African rainforest habitats. Mol Ecol 18:4121–4133. doi:10.1111/j.1365-294X.2009.04346.x

    Article  CAS  PubMed  Google Scholar 

  • Clark GW, Swinehart B (1969) Avian haematozoa from the offshore islands of northern Mexico. Wildl Dis 5:111–112

    CAS  PubMed  Google Scholar 

  • Coe SJ, Rotenberry JT (2003) Water availability affects clutch size in a desert sparrow. Ecology 84:3240–3249. doi:10.1890/02-0789

    Article  Google Scholar 

  • Cox FEG (2010) History of the discovery of the malaria parasites and their vectors. Parasit Vectors 3:5. doi:10.1186/1756-3305-3-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772. doi:10.1038/nmeth.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado-V CA, French K (2012) Parasite-bird interactions in urban areas: current evidence and emerging questions. Landsc Urban Plan 105:5–14. doi:10.1016/j.landurbplan.2011.12.019

    Article  Google Scholar 

  • Deviche P, Parris J (2006) Testosterone treatment to free-ranging male dark-eyed juncos (Junco hyemalis) exacerbates hemoparasitic infection. Auk 123:548–562. doi:10.1642/0004-8038(2006)123[548:TTTFMD]2.0.CO;2

    Article  Google Scholar 

  • Deviche P, Greiner AC, Manteca X (2001) Seasonal and age-related changes in blood parasite prevalence in dark-eyed juncos (Junco hyemalis, Aves, Passeriformes). J Exp Zool 289:456–466

    Article  CAS  PubMed  Google Scholar 

  • Deviche P, Mcgraw K, Greiner EC (2005) Interspecific differences in Hematozoan infection in Sonoran Desert Aimophila sparrows. J Wildl Dis Wildl Dis Assoc 41:532–541. doi:10.7589/0090-3558-41.3.532

    Article  Google Scholar 

  • Efron B (1987) Better bootstrap confidence intervals. J Am Stat Assoc 82:171. doi:10.2307/2289144

    Article  Google Scholar 

  • Fokidis HB, Greiner EC, Deviche P (2008) Interspecific variation in avian blood parasites and haematology associated with urbanization in a desert habitat. J Avian Biol 39:300–310. doi:10.1111/j.0908-8857.2008.04248.x

    Article  Google Scholar 

  • Foo YZ, Nakagawa S, Rhodes G, Simmons LW (2016) The effects of sex hormones on immune function: a meta-analysis. Biol Rev Camb Philos SocBiol Rev Camb Philos Soc. doi:10.1111/brv.12243

  • Garvin MC, Szell CC, Moore FR (2006) Blood parasites of nearctic–neotropical migrant passerine birds during spring trans-gulf migration: impact on host body condition blood parasites of nearctic–neotropical migrant passerine birds during spring trans-gulf migration: impact on host body. J Parasitol 92:990–996. doi:10.1645/GE-758R.1

    Article  PubMed  Google Scholar 

  • Garza Hurtado RDF (2011) Respuesta de la avifauna a los cambios en la estructura vegetal en un gradiente de degradación del altiplano potosino. Instituto Potosino de Investigación Científica y Tecnológica A.C, San Luis

    Google Scholar 

  • González AD, Lotta IA, García LF, Moncada LI, Matta NE (2015) Avian haemosporidians from Neotropical highlands: evidence from morphological and molecular data. Parasitol Int 64:48–59. doi:10.1016/j.parint.2015.01.007

    Article  PubMed  Google Scholar 

  • Grishagin IV (2015) Automatic cell counting with ImageJ. Anal Biochem 473:63–65. doi:10.1016/j.ab.2014.12.007

    Article  CAS  PubMed  Google Scholar 

  • Hellgren O, Waldenström J, Bensch S (2004) A new Pcr assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90:797–802. doi:10.1645/GE-184R1

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Lara C, González-García F, Santiago-Alarcon D (2017) Spatial and seasonal variation of avian malaria infections in five different land use types within a Neotropical montane forest matrix. Landsc Urban Plan 157:151–160. doi:10.1016/j.landurbplan.2016.05.025

    Article  Google Scholar 

  • Hillgarth N, Wingfield J (1997) Testosterone and immunosuppression in vertebrates: implications for parasite-mediated sexual selection. In: Beckage NE (ed) parasites and pathogens. Pp 143–155

  • Howell SNG, Webb S (1995) A guide to the birds of Mexico and northern central America. Oxford University Press, Oxford

    Google Scholar 

  • INEGI (2009) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Catorce, San Luis Potosí. [http://www3.inegi.org.mx]

  • Johnson M, Riper C Van, Pearson K (2002) Black-throated sparrow: Amphispiza bilineata. In: Birds North Am. Online (A. Poole, Ed.). http://bna.birds.cornell.edu/BNA/account/Black-throated_Sparrow.html

  • Kiszewski A, Mellinger A, Spielman A, Malaney P, Sachs SE, Sachs J (2004) A global index representing the stability of malaria transmission. Am J trop med Hyg 70:486–498 Doi: 70/5/486 [pii]

    PubMed  Google Scholar 

  • Klein SL (2004) Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasite Immunol:247–264. doi:10.1111/j.0141-9838.2004.00710.x

  • Levin II, Zwiers P, Deem SL, Geest EA, Higashiguchi JM, Iezhova TA, Jiménez-Uzcátegui G, Kim DH, Morton JP, Perlut NG, Renfrew RB, Sari EHR, Valkiūnas G, Parker PG (2013) Multiple lineages of avian malaria parasites (Plasmodium) in the Galapagos Islands and evidence for arrival via migratory birds. Conserv Biol 27:1366–1377. doi:10.1111/cobi.12127

    Article  CAS  PubMed  Google Scholar 

  • Loiseau C, Iezhova T a, Valkiūnas G, Chasar A, Hutchinson A, Buermann W, Smith TB, RNM S (2010) Spatial variation of haemosporidian parasite infection in African rainforest bird species. J Parasitol 96:21–29. doi:10.1645/GE-2123.1

    Article  PubMed  Google Scholar 

  • Miranda F, Hernandez XE (1963) Los tipos de vegetación de México y su clasificación. Bol la Soc Botánica México 28:29–179. doi:10.17129/botsci.1084

    Google Scholar 

  • Moens MAJ, Pérez-Tris J (2016) Discovering potential sources of emerging pathogens: South America is a reservoir of generalist avian blood parasites. Int J Parasitol 46:41–49. doi:10.1016/j.ijpara.2015.08.001

    Article  PubMed  Google Scholar 

  • Møller AP (2010) Host-parasite interactions and vectors in the barn swallow in relation to climate change. Glob Chang Biol 16:1158–1170. doi:10.1111/j.1365-2486.2009.02035.x

    Article  Google Scholar 

  • Monzalvo-Santos K, Alfaro-De la Torre MC, Chapa-Vargas L, Castro-Larragoitia J, Rodríguez-Estrella R (2016) Arsenic and lead contamination in soil and in feathers of three resident passerine species in a semi-arid mining region of the Mexican plateau. J Environ Sci Heal Part A 51:825–832. doi:10.1080/10934529.2016.1181451

    Article  CAS  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. doi:10.1111/j.2041-210x.2012.00261.x

    Article  Google Scholar 

  • Nordling D, Andersson M, Zohari S, Lars G (1998) Reproductive effort reduces specific immune response and parasite resistance. Proc R Soc B Biol Sci 265:1291–1298. doi:10.1098/rspb.1998.0432

    Article  Google Scholar 

  • Pacheco MA, Escalante AA, Garner MM, Bradley GA, Aguilar RF (2011) Haemosporidian infection in captive masked bobwhite quail (Colinus virginianus ridgwayi), an endangered subspecies of the northern bobwhite quail. Vet Parasitol 182:113–120. doi:10.1016/j.vetpar.2011.06.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Paterson S, Lello J (2003) Mixed models: getting the best use of parasitological data. Trends Parasitol 19:370–375. doi:10.1016/S1471-4922(03)00149-1

    Article  PubMed  Google Scholar 

  • Perkins SL, Schall J, Schall JJ (2002) A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. J Parasitol 88:972–978. doi:10.1645/0022-3395(2002)088[0972:AMPOMP]2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  • Pidgeon AM, Radeloff VC, Mathews NE (2003) Landscape-scale patterns of black-throated sparrow (Amphispiza bilineata) abundance and nest success. Ecol Appl 13:530–542. doi:10.1890/1051-0761(2003)013[0530:LSPOBT]2.0.CO;2

    Article  Google Scholar 

  • Pidgeon AM, Radeloff VC, Mathews NE (2006) Contrasting measures of fitness to classify habitat quality for the black-throated sparrow (Amphispiza bilineata). Biol Conserv 132:199–210. doi:10.1016/j.biocon.2006.03.024

    Article  Google Scholar 

  • R Development Core Team R (2011) R: a language and environment for statistical computing. R Found Stat Comput 1:409

    Google Scholar 

  • Reiczige J, Rózsa L, Reiczigel A, Fabian I (2013) Quantitative Parasitology (QPweb) http://www2.univet.hu/qpweb

  • Reinoso-Pérez MT, Canales-Delgadillo JC, Chapa-Vargas L, Riego-Ruiz L (2016) Haemosporidian parasite prevalence, parasitemia, and diversity in three resident bird species at a shrubland dominated landscape of the Mexican highland plateau. Parasit Vectors 9:307. doi:10.1186/s13071-016-1569-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Renner SC, Lüdtke B, Kaiser S, Kienle J, Schaefer HM, Segelbacher G, Tschapka M, Santiago-Alarcon D (2016) Forests of opportunities and mischief: disentangling the interactions between forests, parasites and immune responses. Int J Parasitol 46:571–579. doi:10.1016/j.ijpara.2016.04.008

    Article  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi:10.1093/bioinformatics/btg180

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard M a, Huelsenbeck JP (2012) Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi:10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  • Rózsa L, Reiczigel J, Majoros G (2000) Quantifying parasites in samples of hosts. J Parasitol 86:228–232. doi:10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Ryckman RE (1960) Biology of Cactiphilic species of Ceratopogonidae (Diptera). Ann Entomol Soc am 53:659–661. doi:10.1093/aesa/53.5.659

    Article  Google Scholar 

  • Rzedowski J (1961) Vegetación del estado de San Luis Potosí. UNAM

    Google Scholar 

  • Rzedowski J (2005) Matorral xerófilo. In: CONABIO (ed) Vegetación de México, 1st ed. pp 247–273

  • Safriel U, Adeel Z, Niemeijer D, Puigdefabregas J, White R, Lal R, Winslow M, Ziedler J, Prince S, Archer E, King C, Shapiro B, Wessels K, Nielsen T, Portnov B, Reshef I, Thonell J, Lachman E, Mcnab D (2005) Dryland systems. In: Hassan R, Scholes R, Ash N (eds) ecosystems and human well-being: current state and trends. Island press, Washington D.C., p 917

    Google Scholar 

  • Santiago-Alarcon D, Carbó-Ramírez P (2015) Parásitos Sanguíneos De Malaria Y Géneros Relacionados (Orden: Haemosporida) En Aves De México: Recomendaciones Metodológicas Para Campo Y Laboratorio. Ornitol Neotrop 26:59–77

    Google Scholar 

  • Sheldon S (1980) Ethnobotany of Agave lecheguilla and Yucca carnerosana in Mexico’s zona Ixtlera. Econ Bot 34:376–390. doi:10.1007/BF02858314

    Article  Google Scholar 

  • Small TW, Sharp PJ, Deviche P (2007) Environmental regulation of the reproductive system in a flexibly breeding Sonoran Desert bird, the rufous-winged sparrow, Aimophila carpalis. Horm Behav 51:483–495. doi:10.1016/j.yhbeh.2007.01.004

    Article  CAS  PubMed  Google Scholar 

  • Tella JL, Blanco G, Forero MG, Gajón A, Donázar JA, Hiraldo F (1999) Habitat, world geographic range, and embryonic development of hosts explain the prevalence of avian hematozoa at small spatial and phylogenetic scales. Proc Natl Acad Sci U S A 96:1785–1789. doi:10.1073/pnas.96.4.1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valera F, Carrillo CM, Barbosa A, Moreno E (2003) Low prevalence of haematozoa in trumpeter finches Bucanetes githagineus from south-eastern Spain: additional support for a restricted distribution of blood parasites in arid lands. J Arid Environ 55:209–213. doi:10.1016/S0140-1963(03)00041-7

    Article  Google Scholar 

  • Valkiūnas G (2004) Avian malaria parasites and other haemosporidia. CRC press, Boca Raton

    Book  Google Scholar 

  • Van Riper IIIC, Hatten JR, Giermakowski JT, Mattson D, Holmes JA, Johnson MJ, Nowak EM, Ironside K, Peters M, Heinrich P, Cole KL, Truettner C, Schwalbe CR (2014) Projecting climate effects on birds and reptiles of the southwestern United States. USGS Open File Rep 2014:1–112. doi:10.3133/ofr20141050

    Google Scholar 

  • Walther EL, Carlson JS, Cornel A, Morris BK, Sehgal RNM (2015) First molecular study of prevalence and diversity of avian haemosporidia in a Central California songbird community. J Ornithol 157:549–564. doi:10.1007/s10336-015-1301-7

    Article  Google Scholar 

Download references

Acknowledgements

We thank to Dr. Gerardo Argüello-Astorga who provided space and material support for the project’s execution, G. Valkiūnas granted us access to a lab in the Nature Research Center, Vilnius, Lithuania and provided help interpreting parasite images, and Dr. Diego Santiago-Alarcon for the technical advice. We thank Maria T. Reinoso, Julio C. Canales, Cristian A. de la Torre, Karina Monzalvo, Antonio Ortiz, Alicia A. Lugo, and J. Romeo Tinajero who assisted us during fieldwork. We also thank Juan P. Rodas and María Elizabeth Cortés Cedillo for the technical assistance. The National Laboratory on Agricultural, Medical and Environmental Biotechnology (Mexico) and Verónica Zárate Chávez provided help for sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Chapa-Vargas.

Ethics declarations

Research involving animals

All fieldwork was conducted using a bird capture permit issued by SEMARNAT, the Secretary for Environmental Management and Natural Resources of Mexico (permit number FAUT-0157). We complied with all Mexican and international regulations required for conducting wildlife research in the field including those from IUCN and CITES. No individuals were harmed during data collection, and all individuals were released on the capture location after samples and measurements were taken.

Funding

This work is part of a Research Project funded by the Mexican Basic Science CONACYT program (project number CB-2012-1-183377). JGH-D thanks Consejo Nacional de Ciencia y Tecnología (CONACYT) for the scholarship awarded for the completion of this study and financial support (325435).

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and material

The datasets used and/or analyzed during the current study are available at the MalAvi (http://mbio-serv2.mbioekol.lu.se/Malavi/) and GenBank (https://www.ncbi.nlm.nih.gov/genbank/) repositories and/or available from the corresponding author on reasonable request.

Electronic supplementary material

ESM 1

(CSV 3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ham-Dueñas, J.G., Chapa-Vargas, L., Stracey, C.M. et al. Haemosporidian prevalence and parasitaemia in the Black-throated sparrow (Amphispiza bilineata) in central-Mexican dryland habitats. Parasitol Res 116, 2527–2537 (2017). https://doi.org/10.1007/s00436-017-5562-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-017-5562-3

Keywords

Navigation