Skip to main content

Advertisement

Log in

Recombinant Sj16 from Schistosoma japonicum contains a functional N-terminal nuclear localization signal necessary for nuclear translocation in dendritic cells and interleukin-10 production

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Sj16 is a Schistosoma japonicum-derived protein (16 kDa in molecular weight) that has been identified as an immune modulation molecule, but the mechanisms of modulation of immune responses are not known. In this report, we aimed to investigate the host immune regulation mechanism by recombinant Sj16 (rSj16) and thus illuminate the molecular mechanism of immune evasion by S. japonicum. The effect of rSj16 and rSj16 mutants on the biology of dendritic cells (DCs) was assessed by examining DC maturation, cytokine production, and expression of surface markers by flow cytometry and enzyme-linked immunosorbent assay. We found that rSj16 significantly stimulated interleukin (IL)-10 production and inhibited LPS-induced bone marrow-derived dendrite cell (BMDC) maturation in a dose-dependent manner. By using antibody neutralization experiments and IL-10-deficient (knockout) mice, we confirmed that the inhibitory effect of rSj16 on LPS-induced BMDCs is due to its induction of IL-10 production. To understand how rSj16 induces the production of IL-10, we analyzed the protein sequence and revealed two potential nuclear localization signals (NLS) in Sj16. The N-terminal NLS (NLS1) is both necessary and sufficient for translocation of rSj16 to the nucleus of BMDCs and is important for subsequent induction of IL-10 production and the inhibition of BMDC maturation by rSj16. The results of our study concluded that the ability of rSj16 to inhibit DC functions is IL-10 dependent which is operated by IL-10R signal pathway. This study also confirmed that NLS is an important domain associated with increased production of IL-10. Our findings will extend the current understanding on host-schistosome relationship and provide insight about bottleneck of parasitic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Pulendran B (2005) Variegation of the immune response with dendritic cells and pathogen recognition receptors. J Immunol 174(5):2457-2465

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brooks DG TM, Edelmann KH, Teyton L, McGavern DB, Oldstone MB. (2006) Brooks DG, Trifilo MJ, Edelmann KH, Teyton L, McGavern DB, Oldstone MB. Interleukin-10 determines viral clearance or persistence in vivo. Nat Med 12(11):1301-1309

  • Carvalho LSJ, Kane C, Marshall F, Krawczyk C, Pearce EJ (2009) Review series on helminths, immune modulation and the hygiene hypothesis: mechanisms underlying helminth modulation of dendritic cell function. Immunology 126(1):28–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen QQ, Chen XY, Jing YY, Liu J (2005) Identification of novel nuclear localization signal within the ErbB-2 protein. CEll RES 15:504–510

    Article  CAS  PubMed  Google Scholar 

  • David Sacks AS (2002) Evasion of innate immunity by parasite protozoa. Nature Immunology 3(11):1041–1047

    Article  CAS  PubMed  Google Scholar 

  • de Jesus AR et al (2004) Association of type 2 cytokines with hepatic fibrosis in human Schistosoma mansoni infection. Infect Immun 72(6):3391–7. doi:10.1128/IAI.72.6.3391-3397.2004

    Article  CAS  PubMed  Google Scholar 

  • Dingwall C, Laskey RA (1991) Nuclear targeting sequences—a consensus? Trends Biochemical Sciences 16:478–481

    Article  CAS  Google Scholar 

  • Gately MKRL, Magram J, Stern AS, Adorini L, Gubler U (1998) The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol 16:495–521

    Article  CAS  PubMed  Google Scholar 

  • Gazzinelli RTW, M.Hieny S, Scharton-Kersten T, Cheever A, Kuhn R, Muller W, Trinchieri G, Sher A (1996) In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha. J Immunol 157(2):798–805

    CAS  PubMed  Google Scholar 

  • Granucci F, Ferrero E, Foti M, Aggujaro D, Vettoretto K, Ricciardi-Castagnoli P (1999) Early events in dendritic cell maturation induced by LPS. Microbes Infect 1(13):1079–84, doi:S1286-4579(99)00209-9

    Article  CAS  PubMed  Google Scholar 

  • Harder A (2002) Chemotherapeutic approaches to schistosomes: current knowledge and outlook. Parasitol Res 88(6):395–397

    CAS  PubMed  Google Scholar 

  • Hawrylowicz CMOG,A (2005) Potential role of interleukin-10 secreting regulatory T cells in allergy and asthma. Nature Rev Immunol 5:271–283

    Article  CAS  Google Scholar 

  • Heufler C, Koch F, Stanzl U, Topar G, Wysocka M, Trinchieri G (1996) Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur J Immunol 26:659–668

  • Hoffmann KF, Wynn TA, Dunne DW (2002) Cytokine-mediated host responses during schistosome infections; walking the fine line between immunological control and immunopathology. Adv Parasitol 52:265–307

    Article  PubMed  Google Scholar 

  • Hu SWZ, Yang L, Fung MC (2008a) Molecular cloning and expression of a functional anti-inflammatory protein, Sj16, of Schistosoma japonicum. Int J Parasitol 39(2):191–200

    Article  CAS  PubMed  Google Scholar 

  • Hu SWZ, Yang L, Fung MC (2008b) Molecular cloning and expression of a functional anti-inflammatory protein, Sj16, of Schistosoma japonicum. Int J Parasitol 39(2):191–200

    Article  CAS  PubMed  Google Scholar 

  • Hu SYL, Wu Z, Wong CS, Fung MC (2012) Suppression of adaptive immunity to heterologous antigens by SJ16 of Schistosoma japonicum. J Parasitol 98(2):274–283

    Article  CAS  PubMed  Google Scholar 

  • Hung S-CH-C (2006) Characterization of a novel tripartite nuclear localization sequence in the EGFR family. J Biol Chem 282:10432–10440

    Google Scholar 

  • Ishwinder KGS, Bart E, Thomas S, Karin BK, Christian B et al (2011) Interleukin-4-inducing principle from Schistosoma mansoni eggs contains a functional C-terminal nuclear localization signal necessary for nuclear translocation in mammalian cells but not for its uptake. American Soc Microbiol 79(4):1779–1788

    Google Scholar 

  • Janelidze SEK, Visse E, Darabi A, Salford LG, Siesjö P (2005) Activation of purified allogenic CD4+ T cells by rat bone marrow-derived dendritic cells induces concurrent secretion of IFN-γ, IL-4 and IL-10. Immunol Lett 101(2):193–201

    Article  CAS  PubMed  Google Scholar 

  • Jee Youn Kim JSK, Kim HM, Kim YK, Lee HK, Song S, Hong JT, Kim Y, Han S-B (2009) Inhibition of phenotypic and functional maturation of dendritic cells by manassantin A. J Pharmacol Sci 109(4):593–596

    Article  CAS  Google Scholar 

  • Jiang HR, Muckersie E, Robertson M, Xu H, Liversidge J, Forrester JV (2002) Secretion of interleukin-10 or interleukin-12 by LPS-activated dendritic cells is critically dependent on time of stimulus relative to initiation of purified DC culture. J Leukoc Biol 72(5):978–85

    CAS  PubMed  Google Scholar 

  • Kang BYKE, Kim TS (2005) Regulatory mechanisms and their therapeutic implications of interleukin-12 production in immune cells. Cell Signal 17:665–673

    Article  CAS  PubMed  Google Scholar 

  • Kaur I et al (2011) Interleukin-4-inducing principle from Schistosoma mansoni eggs contains a functional C-terminal nuclear localization signal necessary for nuclear translocation in mammalian cells but not for its uptake. Infect Immun 79(4):1779–1788. doi:10.1128/Iai.01048-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JYKJ, Kim HM, Kim YK, Lee HK, Song S, Hong JT, Kim Y, Han SB (2009) Inhibition of phenotypic and functional maturation of dendritic cells by manassantin A. J Pharmacol Sci 109(4):583–592

    Article  CAS  PubMed  Google Scholar 

  • Loes M, Kuijk EJ, Gijs K, Susanne MA, van der Pol et al (2012) Soluble helminth products suppress clinical signs in murine experimental autoimmmune encephalomyelitis and differentially modulate human dendritic cell activation. Mol Immunol 51:210–218

    Article  CAS  Google Scholar 

  • Lutz MB, NK A, Ogilvie LJ, Susanne R, Franz K, Nikolaus R, Gerold S (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunological Methods 223:77–92

    Article  CAS  PubMed  Google Scholar 

  • Macatonia SEHN, Litton M, Vieira P, Hsieh CS, Culpepper JA (1995) Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol 154:5071–5079

    CAS  PubMed  Google Scholar 

  • MacDonald AS, Beverley Bauman ADS, Pearce EJ (2001) CD8- dendritic cell activation status plays an integral role in influencing Th2 response development. J Immunol 167:1982–1988

    Article  CAS  PubMed  Google Scholar 

  • Mackinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H, Nilsson UJ, Haslett C, Forbes SJ, Sethi T (2008) Regulation of alternative macrophage activation by galectin-3. J Immunol 180(4):2650–2658

    Article  CAS  PubMed  Google Scholar 

  • Maizels RM, Balic A, Gomez-Escobar N, Nair M, Taylor MD, Allen JE (2004) Helminth parasites—masters of regulation. Immunol Rev 201:109–114

    Article  Google Scholar 

  • Margarida Saraiva AOG (2010) The regulation of IL-10 production by immune cells. Nature Rev Immunol 10:170–181

    Article  CAS  Google Scholar 

  • Marovich MAMM, Thomas EK, Nutman TB (2000) IL-12p70 production by Leishmania major-harboring human dendritic cells is a CD40/CD40 ligand-dependent process. J Immunol 164(11):5858–5865

    Article  CAS  PubMed  Google Scholar 

  • ML. K (2003) Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Inmunol 3(12):984-993

  • Moore KW dWMR, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  CAS  PubMed  Google Scholar 

  • Nakahara TMY, Uchi H, Furue M (2006) Differential role of MAPK signaling in human dendritic cell maturation and Th1/Th2 engagement. J Dermatol Sci 42:1–11

    Article  CAS  PubMed  Google Scholar 

  • O’Garra A, Barrat FJ, Castro AG, Vicari A, Hawrylowicz CM, O’Garra A (2008) Strategies for use of IL-10 or its antagonists in human disease. Immunol Rev 223:114–131

    Article  PubMed  Google Scholar 

  • Pemberton LF, Paschal BM (2005) Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6:187–198

    Article  CAS  PubMed  Google Scholar 

  • Pulendran BPK, Banchereau J (2001) Sensing pathogens and tuning immune responses. Science 293(5528):253–256

    Article  CAS  PubMed  Google Scholar 

  • Soeiro MD, Paiva MM, Barbosa HS, Meirelles MD, Araujo-Jorge TC (1999) A cardiomyocyte mannose receptor system is involved in Trypanosoma cruzi invasion and is down-modulated after infection. Cell Struct Funct 24(3):139–149

    Article  CAS  Google Scholar 

  • Sun XLY, Lv ZY, Yang LL, Hu SM, Zheng HQ, Hu W, Cao JP, Fung MQ, Wu ZD (2010) rSj16, a recombinant protein of Schistosoma japonicum-derived molecule, reduces severity of the complete Freund’s adjuvant-induced adjuvant arthritis in rats’ model. Parasite Immunol 32(11-12):739–748

    Article  CAS  PubMed  Google Scholar 

  • Sun XLZ, Peng H, Fung M, Yang L, Yang J, Zheng H, Liang J, Wu Z (2012a) Effects of a recombinant schistosomal-derived anti-inflammatory molecular (rSj16) on the lipopolysaccharide (LPS)-induced activated RAW264.7. Parasitol Res 110(6):2429–2437

    Article  PubMed  Google Scholar 

  • Sun XJLR, Sun X, Zhou Y, Wang Y, Liu XJ, Lu Q, Zhou CL, Wu ZD (2012b) Unique roles of Schistosoma japonicum protein Sj16 to induce IFN-γ and IL-10 producing CD4(+) CD25(+) regulatory T cells in vitro and in vivo. Parasite Immunol 34(8-9):430–439

    Article  CAS  PubMed  Google Scholar 

  • Terrazas CATL, Gómez-García L (2010) Modulation of dendritic cell responses by parasites: a common strategy to survive., J Biomed Biotechnol

    Google Scholar 

  • Utzinger JZX, Chen MG, Bergquist R (2005) Conquering schistosomiasis in China: the long march. Acta Trop 96(2-3):69–96

    Article  PubMed  Google Scholar 

  • van Riet EHF, Yazdanbakhsh M (2007) Chronic helminth infections induce immunomodulation: consequences and mechanisms. Immunobiology 212(6):475–490

    Article  CAS  PubMed  Google Scholar 

  • Zhou LJTT (1996) CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci USA 93:2588–2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L II, Spolski R, Min R, Shenderov K, Egawa T, Levy DE, Leonard WJ, Littman DR (2007) IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8(9):967–974

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

These experiments were supported by grants from the National High Technology Research and Development Program of China (no. 2015AA020934), National Natural Science Foundation of China (grant no. 81201309 and 30972574), grant from the Doctoral Program of Higher Education of China (grant no. 20120171120049), and grant from the National Science Foundation of Guangdong Province (grant no. S2012040007256).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Sun or Zhongdao Wu.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Fan Yang and Xi Sun contributed equally to this work and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Yang, F., Shen, J. et al. Recombinant Sj16 from Schistosoma japonicum contains a functional N-terminal nuclear localization signal necessary for nuclear translocation in dendritic cells and interleukin-10 production. Parasitol Res 115, 4559–4571 (2016). https://doi.org/10.1007/s00436-016-5247-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5247-3

Keywords

Navigation