Skip to main content
Log in

Soluble antigen derived from IV larva of Angiostrongylus cantonensis promotes chitinase-like protein 3 (Chil3) expression induced by interleukin-13

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Angiostrongyliasis caused by Angiostrongylus cantonensis (A. cantonensis) is an emerging food-borne parasitic disease, which refers basically to eosinophilic meningitis. Chitinase-like protein 3 (Chil3), a member of chitinase-like protein family which has chemotactic activity for eosinophils, is reported to be highly upregulated in brain of mouse infected with A. cantonensis. The mechanisms of high expression of Chil3 and the association between A. cantonensis and Chil3 are rarely reported. In order to understand the mechanism of high expression of Chil3 in A. cantonensis-infected mouse, we measured the level of Chil3 in RAW 264.7 and BV2 cell lines stimulated with soluble antigen of A. cantonensis by qPCR and ELISA. To explore the role of Chil3 in inflammation caused by A. cantonensis, we extracted and cultured brain mononuclear cells (BMNCs) and detected the eosinophil chemotactic activity of Chil3 using transwell assay and flow cytometer. Furthermore, we treated the infected mice by injection with rmChil3 and then counted the number of larvae in brains of infected mice and treated mice to examine the association between the worm and Chil3. Our results showed the soluble antigen from A. cantonensis could promote the Chil3 expression in macrophage and microglial cell lines induced by interleukin-13. In conclusion, we supposed that high expression of Chil3 enhanced by soluble antigens from A. cantonensis might be the reason of serious eosinophil infiltration in mouse brain after A. cantonensis infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arora M, Chen L, Paglia M, Gallagher I, Allen JE, Vyas YM, Ray A, Ray P (2006) Simvastatin promotes Th2-type responses through the induction of the chitinase family member Ym1 in dendritic cells. Proc Natl Acad Sci U S A 103:7777–7782. doi:10.1073/pnas.0508492103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HT (1935) Un nouveau nématode pulmonaire, Pulmonema cantonensis n. g., n. sp., des rats de Canton. Ann Parasit Hum Comp 13:312–370

    Google Scholar 

  • Chuang CC, Chen CW, Huang YT, Du WY (2016) Anti-ST2 monoclonal antibody inhibits eosinophil infiltration in Angiostrongylus cantonensis-infected mice. J Microbiol Immunol Infect 49:91–96. doi:10.1016/j.jmii.2014.01.009

    Article  CAS  PubMed  Google Scholar 

  • Czeh M, Gressens P, Kaindl AM (2011) The yin and yang of microglia. Dev Neurosci 33:199–209. doi:10.1159/000328989

    Article  CAS  PubMed  Google Scholar 

  • David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12:388–399. doi:10.1038/nrn3053

    Article  CAS  PubMed  Google Scholar 

  • Du WY, Chen CW, Lin FK, Chuang CC (2013) IL-33 mediates the expressions of IL-5 and IL-13 in Angiostrongylus cantonensis-infected mice. Exp Parasitol 135:587–594. doi:10.1016/j.exppara.2013.09.012

    Article  CAS  PubMed  Google Scholar 

  • Eamsobhana P, Yoolek A, Punthuprapasa P, Yong HS (2009) Thai koi-hoi snail dish and angiostrongyliasis due to Angiostrongylus cantonensis: effects of food flavoring and alcoholic drink on the third-stage larvae in infected snail meat. Foodborne Pathog Dis 6:401–405. doi:10.1089/fpd.2008.0191

    Article  PubMed  Google Scholar 

  • Ferrante CJ, Pinhal-Enfield G, Elson G, Cronstein BN, Hasko G, Outram S, Leibovich SJ (2013) The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Ralpha) signaling. Inflammation 36:921–931. doi:10.1007/s10753-013-9621-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Palacios V, Chung HY, Choi SJ, Sarmasik A, Kurihara N, Lee JW, Galson DL, Collins R, Roodman GD (2007) Eosinophil chemotactic factor-L (ECF-L) enhances osteoclast formation by increasing in osteoclast precursors expression of LFA-1 and ICAM-1. Bone 40:316–322. doi:10.1016/j.bone.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35. doi:10.1038/nri978

    Article  CAS  PubMed  Google Scholar 

  • Harbord M, Novelli M, Canas B, Power D, Davis C, Godovac-Zimmermann J, Roes J, Segal AW (2002) Ym1 is a neutrophil granule protein that crystallizes in p47phox-deficient mice. J Biol Chem 277:5468–5475. doi:10.1074/jbc.M110635200

    Article  CAS  PubMed  Google Scholar 

  • Hung SI, Chang AC, Kato I, Chang NC (2002) Transient expression of Ym1, a heparin-binding lectin, during developmental hematopoiesis and inflammation. J Leukoc Biol 72:72–82

    CAS  PubMed  Google Scholar 

  • Iwashita H, Morita S, Sagiya Y, Nakanishi A (2006) Role of eosinophil chemotactic factor by T lymphocytes on airway hyperresponsiveness in a murine model of allergic asthma. Am J Respir Cell Mol Biol 35:103–109. doi:10.1165/rcmb.2005-0134OC

    Article  CAS  PubMed  Google Scholar 

  • Lai CH, Yen CM, Chin C, Chung HC, Kuo HC, Lin HH (2007) Eosinophilic meningitis caused by Angiostrongylus cantonensis after ingestion of raw frogs. Am J Trop Med Hyg 76:399–402

    PubMed  Google Scholar 

  • Lee CG (2009) Chitin, chitinases and chitinase-like proteins in allergic inflammation and tissue remodeling. Yonsei Med J 50:22–30. doi:10.3349/ymj.2009.50.1.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loke P, Gallagher I, Nair MG, Zang X, Brombacher F, Mohrs M, Allison JP, Allen JE (2007) Alternative activation is an innate response to injury that requires CD4+ T cells to be sustained during chronic infection. J Immunol 179:3926–3936

    Article  CAS  PubMed  Google Scholar 

  • Mao Q, Xie Z, Wang X, Chen W, Ren M, Shang M, Lei H, Tian Y, Li S, Liang P, Chen T, Liang C, Xu J, Li X, Huang Y, Yu X (2015) Clonorchis sinensis ferritin heavy chain triggers free radicals and mediates inflammation signaling in human hepatic stellate cells. Parasitol Res 114:659–670. doi:10.1007/s00436-014-4230-0

    Article  PubMed  Google Scholar 

  • Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJ, ffrench-Constant C (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16:1211–1218. doi:10.1038/nn.3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair MG, Gallagher IJ, Taylor MD, Loke P, Coulson PS, Wilson RA, Maizels RM, Allen JE (2005) Chitinase and Fizz family members are a generalized feature of nematode infection with selective upregulation of Ym1 and Fizz1 by antigen-presenting cells. Infect Immun 73:385–394. doi:10.1128/IAI.73.1.385-394.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oba Y, Chung HY, Choi SJ, Roodman GD (2003) Eosinophil chemotactic factor-L (ECF-L): a novel osteoclast stimulating factor. J Bone Miner Res 18:1332–1341. doi:10.1359/jbmr.2003.18.7.1332

    Article  CAS  PubMed  Google Scholar 

  • Owhashi M, Arita H, Hayai N (2000) Identification of a novel eosinophil chemotactic cytokine (ECF-L) as a chitinase family protein. J Biol Chem 275:1279–1286

    Article  CAS  PubMed  Google Scholar 

  • Owhashi M, Nawa Y (1987) Eosinophil chemotactic lymphokine produced by spleen cells of Schistosoma japonicum-infected mice. III. Isolation and characterization of two distinctive eosinophil chemotactic lymphokines directed against different maturation stages of eosinophils. Int Arch Allergy Appl Immunol 84:185–189

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Sun R, Zhang Q, Zhao J, Wei J, Zeng X, Zheng H, Wu Z (2013) Interleukin 33 mediates type 2 immunity and inflammation in the central nervous system of mice infected with Angiostrongylus cantonensis. J Infect Dis 207:860–869. doi:10.1093/infdis/jis682

    Article  CAS  PubMed  Google Scholar 

  • Pittman K, Kubes P (2013) Damage-associated molecular patterns control neutrophil recruitment. J Innate Immun 5:315–323. doi:10.1159/000347132

    Article  CAS  PubMed  Google Scholar 

  • Raes G, De Baetselier P, Noel W, Beschin A, Brombacher F, Hassanzadeh Gh G (2002) Differential expression of Fizz1 and Ym1 in alternatively versus classically activated macrophages. J Leukoc Biol 71:597–602

    CAS  PubMed  Google Scholar 

  • Reece JJ, Siracusa MC, Scott AL (2006) Innate immune responses to lung-stage helminth infection induce alternatively activated alveolar macrophages. Infect Immun 74:4970–4981. doi:10.1128/IAI.00687-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen L, Laigret J, Boils PL (1961) Observation on an outbreak of eosinophilic meningitis on Tahiti. French Polynesia Am J Trop Med Hyg 12:613–615

    Google Scholar 

  • Sinawat S, Sanguansak T, Angkawinijwong T, Ratanapakorn T, Intapan PM, Sinawat S, Yospaiboon Y (2008) Ocular angiostrongyliasis: clinical study of three cases. Eye (Lond) 22:1446–1448. doi:10.1038/eye.2008.135

    Article  CAS  Google Scholar 

  • Sutherland TE, Logan N, Ruckerl D, Humbles AA, Allan SM, Papayannopoulos V, Stockinger B, Maizels RM, Allen JE (2014) Chitinase-like proteins promote IL-17-mediated neutrophilia in a tradeoff between nematode killing and host damage. Nat Immunol 15:1116–1125. doi:10.1038/ni.3023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland TE, Maizels RM, Allen JE (2009) Chitinases and chitinase-like proteins: potential therapeutic targets for the treatment of T-helper type 2 allergies. Clin Exp Allergy 39:943–955. doi:10.1111/j.1365-2222.2009.03243.x

    Article  CAS  PubMed  Google Scholar 

  • Tsai ML, Liaw SH, Chang NC (2004) The crystal structure of Ym1 at 1.31 Å resolution. J Struct Biol 148:290–296. doi:10.1016/j.jsb.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  • Vainchtein ID, Vinet J, Brouwer N, Brendecke S, Biagini G, Biber K, Boddeke HW, Eggen BJ (2014) In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed. Glia 62:1724–1735. doi:10.1002/glia.22711

    Article  CAS  PubMed  Google Scholar 

  • Wallace GD, Rosen L (1966) Studies on eosinophilic meningitis. 2. Experimental infection of shrimp and crabs with Angiostrongylus cantonensis. Am J Epidemiol 84:120–131

    CAS  PubMed  Google Scholar 

  • Wang QP, Lai DH, Zhu XQ, Chen XG, Lun ZR (2008) Human angiostrongyliasis. Lancet Infect Dis 8:621–630. doi:10.1016/S1473-3099(08)70229-9

    Article  PubMed  Google Scholar 

  • Wang QP, Wu ZD, Wei J, Owen RL, Lun ZR (2012) Human Angiostrongylus cantonensis: an update. Eur J Clin Microbiol Infect Dis 31:389–395. doi:10.1007/s10096-011-1328-5

    Article  PubMed  Google Scholar 

  • Wei J, Wu F, He A, Zeng X, Ouyang LS, Liu MS, Zheng HQ, Lei WL, Wu ZD, Lv ZY (2015) Microglia activation: one of the checkpoints in the CNS inflammation caused by Angiostrongylus cantonensis infection in rodent model. Parasitol Res 114:3247–3254. doi:10.1007/s00436-015-4541-9

    Article  PubMed  Google Scholar 

  • Wei J, Wu F, Sun X, Zeng X, Liang JY, Zheng HQ, Yu XB, Zhang KX, Wu ZD (2013) Differences in microglia activation between rats-derived cell and mice-derived cell after stimulating by soluble antigen of IV larva from Angiostrongylus cantonensis in vitro. Parasitol Res 112:207–214. doi:10.1007/s00436-012-3127-z

    Article  PubMed  Google Scholar 

  • Welch JS, Escoubet-Lozach L, Sykes DB, Liddiard K, Greaves DR, Glass CK (2002) TH2 cytokines and allergic challenge induce Ym1 expression in macrophages by a STAT6-dependent mechanism. J Biol Chem 277:42821–42829. doi:10.1074/jbc.M205873200

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Wu X, Wei J, Liao Q, Xu L, Luo S, Zeng X, Zhao Y, Lv Z, Wu Z (2015) Preliminary expression profile of cytokines in brain tissue of BALB/c mice with Angiostrongylus cantonensis infection. Parasit Vectors 8:328. doi:10.1186/s13071-015-0939-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Lv Z, Wang F, Wei J, Zhang Q, Li S, Yang F, Zeng X, Wu X, Wu Z (2013) Ym1, an eosinophilic chemotactic factor, participates in the brain inflammation induced by Angiostrongylus cantonensis in mice. Parasitol Res 112:2689–2695. doi:10.1007/s00436-013-3436-x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (NSFC; Nos. 81271855 and 81261160324) to Z-D Wu, NSFC (No. 81572023) to Z-Y Lv, and NSFC (No. 81401686) to J Wei.

Authors’ contributions

FW, JW, XZ, and ZL carried out the experiments and performed the statistical analyses. FW and ZDW drafted the manuscript. ZYL and XZ helped to do the transwell assay section of the study. ZDW and XS conceived the study and coordinated the project. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Sun or Zhongdao Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Wei, J., Liu, Z. et al. Soluble antigen derived from IV larva of Angiostrongylus cantonensis promotes chitinase-like protein 3 (Chil3) expression induced by interleukin-13. Parasitol Res 115, 3737–3746 (2016). https://doi.org/10.1007/s00436-016-5135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5135-x

Keywords

Navigation