Skip to main content
Log in

Ivermectin-loaded lipid nanocapsules: toward the development of a new antiparasitic delivery system for veterinary applications

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Ivermectin (IVM) is probably one of the most widely used antiparasitic drugs worldwide, and its efficacy is well established. However, slight differences in formulation may change the plasma kinetics, the biodistribution, and in consequence, the efficacy of this compound. The present study focuses on the development of a novel nanocarrier for the delivery of lipophilic drugs such as IVM and its potential application in antiparasitic control. Lipid nanocapsules (LNC) were prepared by a new phase inversion procedure and characterized in terms of size, surface potential, encapsulation efficiency, and physical stability. A complement activation assay (CH50) and uptake experiments by THP-1 macrophage cells were used to assess the stealth properties of this nanocarrier in vitro. Finally, a pharmacokinetics and biodistribution study was carried out as a proof of concept after subcutaneous (SC) injection in a rat model. The final IVM-LNC suspension displayed a narrow size distribution and an encapsulation rate higher than 90 % constant over the evaluated time (60 days). Through flow cytometry and blood permanence measurements, it was possible to confirm the ability of these particles to avoid the macrophage uptake. Moreover, the systemic disposition of IVM in the LNC administered by the SC route was higher (p < 0.05) (1367 ng h/ml) compared to treatment with a commercial formulation (CF) (1193 ng.h/ml), but no significant differences in the biodistribution pattern were found. In conclusion, this new carrier seems to be a promising therapeutic approach in antiparasitic control and to delay the appearance of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvinerie M, Sutra JF, Galtier P (1993) Ivermectin in goat milk after subcutaneous injection. Vet Res 24:417–421

    CAS  PubMed  Google Scholar 

  • Ballot S, Noiret N, Hindré F, Denizot B, Garin E, Rajerison H, Benoit JP (2006) 99mTc/188Re-labeled lipid nanocapsules as promising radiotracers for imaging and therapy: formulation and biodistribution. Eur J Nucl Med Mol Imaging 33:602–607

    Article  CAS  PubMed  Google Scholar 

  • Basilea L, Passirani C, Huynh NT, Béjaud J, Benoit JP, Puglisi G, Pignatello R (2012) Serum-stable, long-circulating paclitaxel-loaded colloidal carriers decorated with a new amphiphilic PEG derivative. Int J Pharm 426:231–238

    Article  Google Scholar 

  • Bassissi F, Lespine A, Alvinerie M (2006) Assessment of a liposomal formulation of ivermectin in rabbit after a single subcutaneous administration. Parasitol Res 3:244–249

    Article  Google Scholar 

  • Chiu SHL, Green ML, Bayliss FP, Eline D, Rosegay A, Meriwether H, Jacob TA (1990) Absorption, tissue distribution, and excretion of tritium-labeled ivermectin in cattle, sheep, and rat. J Agric Food Chem 38:2072–2078

    Article  CAS  Google Scholar 

  • De Montigny P, Shim JS, Pivnichny JV (1990) Liquid chromatographic determination of ivermectin in animal plasma with trifluoroacetic anhydride and N-methylimidazole as the derivatization reagent. J Pharm Biomed Anal 8:507–511

    Article  PubMed  Google Scholar 

  • Demeler J, Van Zeveren AM, Kleinschmidt N, Vercruysse J, Höglund J, Koopmann R, Cabaret J, Claerebout E, Areskog M, von Samson-Himmelstjern G (2009) Monitoring the efficacy of ivermectin and albendazole against gastro intestinal nematodes of cattle in Northern Europe. Vet Parasitol 160:109–115

    Article  CAS  PubMed  Google Scholar 

  • Eraslan G, Kanbur M, Liman BC, Cam Y, Karabacak M, Altinordulu S (2010) Comparative pharmacokinetics of some injectable preparations containing ivermectin in dogs. Food Chem Toxicol 48:2181–2185

    Article  CAS  PubMed  Google Scholar 

  • Garcion E, Lamprecht A, Heurtault B, Paillard A, Aubert-Pouessel A, Denizot B, Menei P, Benoît JP (2006) A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Mol Cancer Ther 5:1710–1722

    Article  CAS  PubMed  Google Scholar 

  • Gibaldi M, Perrier D (1982) Pharmacokinetics. Marcel Dekker, New York

    Google Scholar 

  • González Canga A, Sahagún Prieto AM, José Diez Liébana M, Martínez NF, Vega MS, Vieitez JJ (2009) The pharmacokinetics and metabolism of ivermectin in domestic animal species. Rev Article Vet J 179:25–37

    Google Scholar 

  • Hennessy DR (1997) Modifying the formulation or delivery mechanism to increase the activity of anthelmintic compounds. Vet Parasitol 72:367–382

    Article  CAS  PubMed  Google Scholar 

  • Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP (2002) A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res 19:875–880

    Article  CAS  PubMed  Google Scholar 

  • Huynh NT, Passirani C, Saulnier P, Benoit JP (2009) Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm 379:201–209

    Article  CAS  PubMed  Google Scholar 

  • Kaplan RM (2004) Drug resistance in nematodes of veterinary importance. A status report. Trend Parasitol 20:477–481

    Article  CAS  Google Scholar 

  • Kawashima Y (2006) Nanoparticulate systems for improved drug delivery. Adv Drug Del Rev 47:11–16

    Google Scholar 

  • Kazatchkine MD, Carreno MP (1988) Activation of the complement system at the interface between blood and artificial surfaces. Biomaterials 9:30–35

    Article  CAS  PubMed  Google Scholar 

  • Lamprecht A, Benoit JP (2006) Etoposide nanocarriers suppress glioma cell growth by intracellular drug delivery and simultaneous P-glycoprotein inhibition. J Control Release 112:208–213

    Article  CAS  PubMed  Google Scholar 

  • Lamprecht A, Saumet JL, Roux J, Benoit JP (2004) Lipid nanocarriers as drug delivery system for ibuprofen in pain treatment. Int J Pharm 278:407–414

    Article  CAS  PubMed  Google Scholar 

  • Lanusse C, Lifschitz A, Virkel G, Alvarez L, Sánchez S, Sutra JF, Galtier P, Alvinerie M (1997) Comparative plasma disposition kinetics of ivermectin, moxidectin and doramectin in cattle. J Vet Phamacol Ther 20:91–99

    Article  CAS  Google Scholar 

  • Lespine A, Alvinerie M, Sutra JF, Pors I, Chartier C (2005) Influence of the route of administration on efficacy and tissue distribution of ivermectin in goat. Vet Parasitol 128:251–260

    Article  CAS  PubMed  Google Scholar 

  • Lifschitz A, Virkel G, Sallovitz J, Sutra JF, Galtier P, Alvinerie M, Lanusse C (2000) Comparative distribution of ivermectin and doramectin to tissues of parasite location in cattle. Vet Parasitol 87:327–338

    Article  CAS  PubMed  Google Scholar 

  • Lifschitz A, Virkel G, Ballent M, Sallovitz J, Imperiale F, Pis A, Lanusse C (2007) Ivermectin (3.15%) long-acting formulations in cattle: absorption pattern and pharmacokinetic considerations. Vet Parasitol 147:303–310

    Article  CAS  PubMed  Google Scholar 

  • Lo P, Fink DW, Williams JB, Blodinger J (1985) Pharmacokinetics studies of ivermectin: effect of formulation. Vet Res Commun 9:251–268

    Article  CAS  PubMed  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    CAS  PubMed  Google Scholar 

  • Mosqueira P, Legrand P, Morgat JL, Vert M, Mysiakine E, Gref R, Devissaguet JP, Barratt G (2001a) Biodistribution of long-circulating PEG-grafted nanocapsules in mice: effects of PEG chain length and density. Pharm Res 18:1411–1419

    Article  CAS  PubMed  Google Scholar 

  • Mosqueira P, Lifschitz A, Virkel G, Alvarez L, Sánchez S, Sutra JF, Galtier P, Alvinerie M (2001b) Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials 22:2967–2979

    Article  CAS  PubMed  Google Scholar 

  • Passirani C, Benoit JP (2005) Complement activation by injectable colloidal drug carriers. Biomat Deliv Target Protein Nucleic Acid 2:187–230

    Google Scholar 

  • Passirani C, Barratt G, Devissaguet JP, Labarre D (1998) Interactions of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate) with the complement system. Life Sci 62:775–785

    Article  CAS  PubMed  Google Scholar 

  • Peltier S, Oger JM, Lagarce F, Couet W, Benoit JP (2006) Enhanced oral paclitaxel bioavailability after administration of paclitaxel loaded lipid nanocapsules. Pharm Res 23:1243–1250

    Article  CAS  PubMed  Google Scholar 

  • Pensel PE, Ullio Gamboa G, Fabbri J, Ceballos L, Sanchez Bruni S, Alvarez LI, Allemandi D, Benoit JP, Palma SD, Elissondo MC(2015) Cystic echinococcosis therapy: Albendazole-loaded lipid nanocapsules enhance the oral bioavailability and efficacy in experimentally infected mice. Acta Trop 152:185–194

  • Petrak K (2006) Nanotechnology and site-targeted drug delivery. J Biomater Sci Polym 11:1209–1219

    Article  Google Scholar 

  • Scott EW, McKellar QA (1992) The distribution and some pharmacokinetic parameters of ivermectin in pigs. Vet Res Commun 16:139–146

    Article  CAS  PubMed  Google Scholar 

  • Teli MK, Mutalik S, Rajanikant GK (2010) Nanotechnology and nanomedicine: going small means aiming big. Curr Pharm Des 16:1882–1892

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya S, Goto Y, Okumura H, Nakae S, Konno T, Tada K (1982) Induction of maturation in cultured human monocytic leukemia cells by a phorboldiester. Cancer Res 42:1530–1536

    CAS  PubMed  Google Scholar 

  • Vonarbourg A, Passirani C, Saulnier P, Simard P, Leroux JC, Benoit JP (2006) Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J Biomed Mater Res A 78:620–628

    Article  CAS  PubMed  Google Scholar 

  • Wicks S, Kaye B, Weatherley AJ, Lewis D, Davison E, Gibson SP, Smith DG (1993) Effect of formulation on the pharmacokinetics and efficacy of doramectin. Vet Parasitol 49:17–26

    Article  CAS  PubMed  Google Scholar 

  • Yates DM, Wolstenholme AJ (2004) An ivermectin-sensitive glutamate-gated chloride channel subunit from Dirofilaria immitis. Int J Parasitol 34:1075–1081

Download references

Acknowledgments

The authors would like to thank Dr. Daniel Brusa (CEMETRO, Universidad Tecnológica Nacional, Facultad Regional Córdoba, Córdoba, Argentina) for assistance with atomic force imaging. The authors are also grateful to the technical staff Nolwenn Lautram and Béjaud Jérôme (INSERM U1066, Micro et Nanomédecines biomimétiques, IBS-CHU Angers, France) for their help in skillful technical support. Ms. Gabriela Ullio Gamboa thanks the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) for a research fellowship. This work was supported by the grants SECyT-UNC [Res. 162/12] and CONICET [PID N° 11220090100673].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Allemandi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamboa, G.V.U., Palma, S.D., Lifschitz, A. et al. Ivermectin-loaded lipid nanocapsules: toward the development of a new antiparasitic delivery system for veterinary applications. Parasitol Res 115, 1945–1953 (2016). https://doi.org/10.1007/s00436-016-4937-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-4937-1

Keywords

Navigation