Skip to main content

Advertisement

Log in

Studies on insecticide susceptibility of Aedes aegypti (Linn) and Aedes albopictus (Skuse) vectors of dengue and chikungunya in Andaman and Nicobar Islands, India

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Dengue and chikungunya are important arboviral infections in the Andaman Islands. Competent vectors viz. Aedes aegypti and Aedes albopictus are widely prevalent. The most effective proven method for interrupting the transmission of these arboviruses is vector control, mediated through insecticides. Currently, DDT and temephos are the insecticides used for vector control in these islands. Lack of information on susceptibility necessitated assessing the susceptibility profile of A. aegypti and A. albopictus. F1 generation of adult and larvae were assayed, and LT50 and LT90 values were interpreted following the World Health Organization (WHO) protocol. Adults were found resistant to DDT-4 % while susceptible to dieldrin-0.4 %. Against organophosphates, both showed resistance to fenitrothion but susceptible to malathion-5 %. Both species showed resistance to carbamate and bendiocarb-0.1 % while susceptible to propoxur-0.1 %. Of the four synthetic pyrethroids, both were susceptible to deltamethrin-0.05 %, while resistant to permethrin-0.75 %, lambdacyhalothrin-0.05 % and cyfluthrin-0.15 %. Larvae of both species showed resistance to temephos at 0.02 mg/L but susceptible to malathion at 1 mg/L and fenthion at 0.05 mg/L. Currently, there is no prescribed WHO dose for adult-insecticide susceptibility testing. The emergence of resistance to DDT and temephos in the vector population poses a challenge to the on-going vector control measures. The results highlight the need for monitoring resistance to insecticides in the vector population. Impetus for source reduction and alternative choices of control measures are discussed for tackling future threat of arboviral infections in these islands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Amalraj D, Sahu SS, Jambulingam P et al (2000) Efficacy of aqueous suspension and granular formulations of Bacillus thuringiensis (Vectobac) against mosquito vectors. Acta Trop 7:243–246

    Article  Google Scholar 

  • Andaman and Nicobar administration (2009) Statistics book, Directorate of statistics, Port Blair, Andaman and Nicobar administration

  • Anonymous. Annual Report (2009-10), Regional Medical Research Centre, Port Blair

  • Bhattacharya A, Barik SR, Ganguly P (2009) New pesticide molecules, formulation technology and uses: present status and future challenges. J Plant Prot Sci 1:9–15

    Google Scholar 

  • Brogdon WG, McAllister JC (1998) Insecticide resistance and vector control. Emerg Infect Dis 4:605–613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chaaithanya IK, Bhattacharya D, Muruganandam N et al (2012) Dengue: a newly emerging viral infection in Andaman and Nicobar Islands, India. Epidemiol Infect 140:1920–1924

    Article  CAS  PubMed  Google Scholar 

  • Chareonviriyaphap T, Bangs MJ, Suwonkerd W et al (2013) Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasit Vectors 25:6–280

    Google Scholar 

  • Chen CD, Nazni WA, Lee HL, Sofian-Azirun M (2005) Susceptibility of Aedes aegypti and Aedes albopictus to temephos in four study sites in Kuala Lumpur City Center and Selangor State, Malaysia. Trop Biomed 22:207–216

    CAS  PubMed  Google Scholar 

  • Das BP, Kabilan L, Sharma SN, Lal S, Ragu K, Saxena VK (2004) Detection of dengue virus in wild caught Aedes albopictus (Skuse) around Calicut Airport, Malapuram district, Kerala, India. Dengue Bull 28:210–212

    Google Scholar 

  • Dash AP, Raghavendra K, Pillai MKK (2006) Combating resistance to insecticides in malaria control—gains made in India. Bayer Environ Sci J 18:30–37

    Google Scholar 

  • Dhiman S, Rabha B, Yadav K, Baruah I, Veer V (2014) Insecticide susceptibility and dengue vector status of wild Stegomya albopicta in a strategically important area of Assam, India. Parasit Vectors 7:295

    Article  PubMed Central  PubMed  Google Scholar 

  • Dia I, Diagne CT, Ba Y, Diallo D, Konate L, Diallo M (2012) Insecticide susceptibility of Aedes aegypti populations from Senegal and Cape Verde Archipelago. Parasit Vectors 22:5–238

    Google Scholar 

  • Dusfour I, Thalmensy V, Gaborit P, Issaly J, Carinci R, Girod R (2011) Multiple insecticide resistance in Aedes aegypti (Diptera: Culicidae) populations compromises the effectiveness of dengue vector control in French Guiana. Mem Inst Oswaldo Cruz 106:346–352

    Article  CAS  PubMed  Google Scholar 

  • Farajollahi A, Williams GM, Condon GC, Kesavaraju B, Unlu I, Gaugler R (2013) Assessment of a direct application of two Bacillus thuringiensis israelensis formulations for immediate and residual control of Aedes albopictus. J Am Mosq Control Assoc 29:385–388

    Article  PubMed  Google Scholar 

  • Ferrari JA (1996) Insecticide resistance In: The biology of disease vectors. Beaty BJ and Marquardt WC (eds). University Press of Colorado, Niwot, Colorado pp: 512–529

  • Gratz NG (1993) Lessons of Aedes aegypti control in Thailand. Med Vet Entomol 7:1–10

    Article  CAS  PubMed  Google Scholar 

  • Grisales N, Poupardin R, Gomez S, Fonseca-Gonzalez I, Ranson H, Lenhart A et al (2013) Temephos resistance in Aedes aegypti in Colombia compromises dengue vector control. PLoS Negl Trop Dis 7(9):e2438

    Article  PubMed Central  PubMed  Google Scholar 

  • Harris AF, Rajatileka S, Ranson H (2010) Pyrethroid. Resistance in Aedes aegypti from Grand Cayman. Am J Trop Med Hyg 83:277–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hemingway J, Ranson NH (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391

    Article  CAS  PubMed  Google Scholar 

  • Hidayati H, Nazni WA, Lee HL, Sofian-Azirun M (2011) Insecticide resistance development in Aedes aegypti upon selection pressure with malathion. Trop Biomed 28:425–437

    CAS  PubMed  Google Scholar 

  • Jagadeshwaran U, Vijayan VA (2009) Biochemical characterization of deltamethrin resistance in a laboratory-selected strain of Aedes aegypti. Parasitol Res 104:1431–1438

    Article  PubMed  Google Scholar 

  • Jirakanjanakit N, Rongnoparut P, Saengtharatip S (2007) Insecticide susceptible/resistance status in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Thailand during 2003–2005. J Econ Entomol 100:545–550

    PubMed  Google Scholar 

  • Kamgang B, Marcombe S, Chandre F et al (2011) Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa. Parasit Vectors 15:4–79

    Google Scholar 

  • Karunaratne SH, Weeraratne TC, Perera MD, Surendran SN (2013) Insecticide resistance, and efficacy of space spraying and larviciding in the control of dengue vectors Aedes aegypti and Aedes albopictus in Sri Lanka. Pestic Biochem Physiol 107:98–105

    Article  CAS  PubMed  Google Scholar 

  • Khan HA, Akram W, Shehzad K, Shaalan EA (2011) First report of field evolved resistance to agrochemicals in dengue mosquito, Aedes albopictus (Diptera: Culicidae), from Pakistan. Parasit Vectors 2:4–146

    Google Scholar 

  • Komalamisra N, Srisawat R, Phanbhuwong T, Oatwaree S (2011) Insecticide susceptibility of the dengue vector, Aedes aegypti (L.) in Metropolitan Bangkok. Southeast Asian J Trop Med Public Health 4:814–823

    Google Scholar 

  • Krishnamoorthy K, Jambulingam P, Natarajan R et al (2005) Altered environment and risk of malaria outbreak in South Andaman, Andaman & Nicobar Islands, India affected by tsunami disaster. Malar J 20:4–32

    Google Scholar 

  • Macoris Mde L, Andrighetti MT, Takaku L et al (2003) Resistance of Aedes aegypti from the state of São Paulo, Brazil, to organophosphates insecticides. Mem Inst Oswaldo Cruz 98:703–708

    Article  PubMed  Google Scholar 

  • Macoris Mde L, Andrighetti MT, Otrera VC et al (2007) Association of insecticide use and alteration on Aedes aegypti susceptibility status. Mem Inst Oswaldo Cruz 102:895–900

    Article  PubMed  Google Scholar 

  • Madhukar BVR, Pillai MKK (1968) Insecticide susceptibility in Indian strains of Aedes aegypti (Linn). Mos News 28:222–225

    CAS  Google Scholar 

  • Manimunda SP, Singh SS, Sugunan AP et al (2007) Chikungunya fever, Andaman and Nicobar Islands, India. Emerg Infect Dis 13:1259–1260

    Article  PubMed Central  PubMed  Google Scholar 

  • Marina CF, Bond JG, Casas M et al (2011) Spinosad as an effective larvicide for control of Aedes albopictus and Aedes aegypti, vectors of dengue in southern Mexico. Pest Manag Sci 67:114–121

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay AK, Patnaik SK, Babu PS (2006) Susceptibility status of some culicine mosquitoes to insecticides in Rajahmundry town of Andhra Pradesh, India. J Vector Borne Dis 43:39–41

    CAS  PubMed  Google Scholar 

  • Mulyatno KC, Yamanaka A, Ngadino KE (2012) Resistance of Aedes aegypti (L.) larvae to temephos in Surabaya, Indonesia. Southeast Asian. J Trop Med Public Health 43:29–33

    CAS  Google Scholar 

  • Muruganandam N, Chaaithanya IK, Senthil GS et al (2011) Isolation and molecular characterization of Chikungunya virus from the Andaman and Nicobar archipelago, India: evidence of an East, Central, and South African genotype. Can J Microbiol 57:1073–1077

    Article  CAS  PubMed  Google Scholar 

  • Muruganandam N, Chaaithanya IK, Mullaikodi S et al (2014) Dengue virus serotype-3 (subtype-III) in Port Blair, India. J Vector Borne Dis 51:58–61

    CAS  PubMed  Google Scholar 

  • Paupy C, Delatte H, Bagny L, Corbe V, Fontenille D (2009) Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect 11:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Polson KA, Brogdon WG, Rawlins SC, Chadee DD (2011) Characterization of insecticide resistance in Trinidadian strains of Aedes aegypti mosquitoes. Acta Trop 117:31–38

    Article  CAS  PubMed  Google Scholar 

  • Raghavan NGS, Wattal BL, Bhatnagar VN, Choudhury DS, Joshi GC, Krishnan KS (1967) Present status of susceptibility of arthropods of public health importance to insecticides in India. Bull Indian Soc Malar Commun Dis 4:209–245

    Google Scholar 

  • Ritchie SA, Rapley LP, Benjamin S (2010) Bacillus thuringiensis var. israelensis (Bti) provides residual control of Aedes aegypti in small containers. Am J Trop Med Hyg 82:1053–1059

    Article  PubMed Central  PubMed  Google Scholar 

  • Rong LS, Ann AT, Ahmad NW, Lim LH, Azirun MS (2012) Insecticide susceptibility status of field-collected Aedes (Stegomyia) aegypti (L.) at a dengue endemic site in Shah Alam, Selangor, Malaysia. Southeast Asian J Trop Med Public Health 43:34–47

    CAS  PubMed  Google Scholar 

  • Shriram AN, Sehgal SC (1999) Aedes aegypti (L) in Port Blair, Andaman and Nicobar islands-distribution and larval ecology. J Commun Dis 31:185–192

    CAS  PubMed  Google Scholar 

  • Shriram AN, Sugunan AP, Vijayachari P (2008) Infiltration of Aedes aegypti into peri-urban areas in South Andaman. Indian J Med Res 127:618–620

    CAS  PubMed  Google Scholar 

  • Shriram AN, Sugunan AP, Manimunda SP, Vijayachari P (2009) Community-centred approach for the control of Aedes Spp in a peri-urban zone in the Andaman and Nicobar Islands using Temephos. Natl Med J India 22:116–120

    CAS  PubMed  Google Scholar 

  • Singh RK, Dhiman RC, Mittal PK, Dua VK (2011) Susceptibility status of dengue vectors against various insecticides in Koderma (Jharkhand) India. J Vector Borne Dis 48:116–118

    CAS  PubMed  Google Scholar 

  • Somboon P, Prapanthadara LA, Suwonkerd W (2003) Insecticide susceptibility tests of Anopheles minimus, Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus in northern Thailand. Southeast Asian J Trop Med Public Health 34:87–93

    CAS  PubMed  Google Scholar 

  • Somwang P, Yanola J, Suwan W, Walton C, Lumjuan N, Prapanthadara LA, Somboon P et al (2011) Enzymes-based resistant mechanism in pyrethroid resistant and susceptible Aedes aegypti strains from northern Thailand. Parasitol Res 109:531–537

    Article  PubMed  Google Scholar 

  • Sunish IP, Shriram AN, Arun S, Vijayachari P (2014) Spatio-temporal distribution of Aedes mosquitoes in Car Nicobar Island: implication in the transmission of arboviruses. J Asia Pac Entomol 17:761–766

    Article  Google Scholar 

  • Swarnam TP, Velmurugan A (2013) Pesticide residues in vegetable samples from the Andaman Islands, India. Environ Monit Assess 185:6119–6127

    Article  CAS  PubMed  Google Scholar 

  • Tan AW, Loke SR, Benjamin S, Lee HL, Chooi KH, Sofian-Azirun M (2012) Spray application of Bacillus thuringiensis israelensis (Bti strain AM65-52) against Aedes aegypti (L.) and Ae. albopictus Skuse populations and impact on dengue transmission in a dengue endemic residential site in Malaysia. Southeast Asian J Trop Med Public Health 43:296–310

    CAS  PubMed  Google Scholar 

  • Thenmozhi V, Hiryan J, Tiwari SC, Samuel P (2007) Natural and vertical transmission of dengue virus in Aedes albopictus in southern India, state Kerala. Jpn J Infect Dis 60:245–259

    PubMed  Google Scholar 

  • Tikar SN, Mendki MJ, Chandel K, Parashar BD, Prakash S (2008) Susceptibility of immature stages of Aedes (Stegomyia) aegypti; vector of dengue and chikungunya to insecticides from India. Parasitol Res 102:907–913

    Article  CAS  PubMed  Google Scholar 

  • Tikar SN, Kumar A, Prasad GBKS, Prakash S (2009) Temephos-induced resistance in Aedes aegypti and its cross-resistance studies to certain insecticides from India. Parasitol Res 105:57–63

    Article  CAS  PubMed  Google Scholar 

  • Vijayachari P, Singh SS, Sugunan AP et al (2011) Emergence of dengue in Andaman and Nicobar archipelago: eco-epidemiological perspective. Indian J Med Res 134:235–237

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vythilingam I, Chiang GL, Amatachaya C (1992) Adulticidal effect of cyfluthrin against mosquitos of public health importance in Malaysia. Southeast Asian J Trop Med Public Health 23:111–115

    CAS  PubMed  Google Scholar 

  • World Health Organization (1981a) Instructions for determining the susceptibility or resistance of adult mosquito to organo-chlorine organophosphate and carbonate insecticides–Diagnostic test. WHO/VBC/81-806

  • World Health Organization (1981b) Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. WHO/VBC/81-807

  • World Health Organization (2005) Guide lines for laboratory and field testing of mosquito larvicides. Geneva

  • World Health Organization (2012) Handbook for integrated vector management, ISBN: 978 92 4 150280 1 WHO/HTM/NTP/VEM/2012.3

  • World Health Organization (2013) Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. ISBN: 978 92 4 150515 4

  • World Health Organization Newsletter (2006) Epidemic and pandemic alert and response, chikungunya and dengue in southwest Indian Ocean. March 2006 Disease outbreak news

  • Yadav K, Rabha B, Dhiman S, Veer V (2015) Multi-insecticide susceptibility evaluation of dengue vectors Stegomyia albopicta and St. aegypti in Assam, India. Parasit Vectors 8:143

    Article  PubMed Central  PubMed  Google Scholar 

  • Zeller HG (1998) Dengue, arbovirus and migrations in the Indian Ocean. Bull Soc Pathol Exot 91:56–60

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr P Vijayachari, Director, Regional Medical Research Centre (ICMR), Port Blair for extending all the facilities for undertaking this study. Authors acknowledge the useful suggestions on the manuscript provided by Dr K Raghavendra, Scientist “E”, National Institute of Malaria Research (ICMR), New Delhi. Technical Assistance rendered by the staff of the Division of Medical Entomology and Vector Borne Diseases is gratefully acknowledged throughout the conduct of study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Shriram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivan, A., Shriram, A.N., Sunish, I.P. et al. Studies on insecticide susceptibility of Aedes aegypti (Linn) and Aedes albopictus (Skuse) vectors of dengue and chikungunya in Andaman and Nicobar Islands, India. Parasitol Res 114, 4693–4702 (2015). https://doi.org/10.1007/s00436-015-4717-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4717-3

Keywords

Navigation