Skip to main content
Log in

Genes encoding defensins of important Chagas disease vectors used for phylogenetic studies

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Insects possess both cellular and humoral immune responses. The latter makes them capable to recognize and control invading pathogens after synthesis of a variety of small proteins, also known as antimicrobial peptides. Defensins, cysteine-rich cationic peptides with major activity against Gram-positive bacteria, are one ubiquitous class of antimicrobial peptides, widely distributed in different animal and plant taxa. Regarding triatomines in each of the so far analyzed species, various defensin gene isoforms have been identified. In the present study, these genes were sequenced and used as a molecular marker for phylogenetic analysis. Considering the vectors of Chagas disease the authors are reporting for the first time the presence of these genes in Triatoma sordida (Stål, 1859), Rhodnius nasutus (Stål, 1859), and Panstrongylus megistus (Burmeister, 1835). Members of the Triatoma brasiliensis species complex were included into the study to verify the genetic variability within these taxa. Mainly in their mature peptide, the deduced defensin amino acid sequences were highly conserved. In the dendrogram based on defensin encoding nucleotide, sequences the Triatoma Def3/4 genes were separated from the rest. In the dendrogram based on deduced amino acid sequences the Triatoma Def2/3/4 together with Rhodnius DefA/B pre-propeptides were separated from the rest. In the sub-branches of both the DNA and amino acid dendrograms, the genus Triatoma was separated from the genus Rhodnius as well as from P. megistus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Araújo CAC, Waniek PJ, Stock P, Mayer C, Jansen AM, Schaub GA (2006) Sequence characterization and expression patterns of defensin and lysozyme encoding genes from the gut of the reduviid bug, Triatoma brasiliensis. Insect Biochem Mol Biol 36:547–560

    Article  PubMed  Google Scholar 

  • Araújo CAC, Cabello PH, Jansen AM (2007) Growth behaviour of two Trypanosoma cruzi strains in single and mixed infections: in vitro and in the intestinal tract of the blood-sucking bug, Triatoma brasiliensis. Acta Trop 101:225–231

    Article  PubMed  Google Scholar 

  • Araújo CAC, Waniek PJ, Jansen AM (2008) Development of a Trypanosoma cruzi (TcI) isolate in the digestive tract of an unfamiliar vector, Triatoma brasiliensis (Hemiptera, Reduviidae). Acta Trop 107:195–199

    Article  PubMed  Google Scholar 

  • Araújo CAC, Waniek PJ, Jansen AM (2009) An overview of Chagas disease and the role of triatomines on its distribution in Brazil. Vector Borne Zoonotic Dis 9:227–234

    Article  PubMed  Google Scholar 

  • Araújo CAC, Waniek PJ, Jansen AM (2014) TcI and TcII co-infection can enhance Trypanosoma cruzi growth in Rhodnius prolixus. Parasit Vectors 7:94

    Article  PubMed Central  PubMed  Google Scholar 

  • Assumpção TCF, Francischetti IMB, Andersen JF, Schwarz A, Santana JM, Ribeiro JMC (2008) An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas’ disease. Insect Biochem Mol Biol 38:213–232

    Article  PubMed Central  PubMed  Google Scholar 

  • Azambuja P, Feder D, Garcia ES (2004) Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. Exp Parasitol 107:89–96

    Article  CAS  PubMed  Google Scholar 

  • Azambuja P, Ratcliffe NA, Garcia ES (2005) Towards an understanding of the interactions of Trypanosoma cruzi and Trypanosoma rangeli within the reduviid insect host Rhodnius prolixus. An Acad Bras Cienc 77:397–404

    Article  CAS  PubMed  Google Scholar 

  • Bargues MD, Zuriaga MA, Mas-Coma S (2014) Nuclear rDNA pseudogenes in Chagas disease vectors: evolutionary implications of a new 5.8S+ITS-2 paralogous sequence marker in triatomines of North, Central and northern South America. Infect Genet Evol 21:134–156

    Article  CAS  PubMed  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Blandón-Naranjo M, Zuriaga MA, Azofeifa G, Zeledón R, Bargues MD (2010) Molecular evidence of intraspecific variability in different habitat-related populations of Triatoma dimidiata (Hemiptera: Reduviidae) from Costa Rica. Parasitol Res 106:895–905

    Article  PubMed  Google Scholar 

  • Boulanger N, Bulet P, Lowenberger C (2006) Antimicrobial peptides in the interactions between insects and flagellate parasites. Trends Parasitol 22:262–268

    Article  CAS  PubMed  Google Scholar 

  • Bulet P, Cociancich S, Reuland M, Sauber F, Bischoff R, Hegy G, Van Dorsselaer A, Hetru C, Hoffmann JA (1992) A novel insect defensin mediates the inducible antibacterial activity in larvae of the dragonfly Aeschna cyanea (Paleoptera, Odonata). Eur J Biochem 209:977–984

    Article  CAS  PubMed  Google Scholar 

  • Bulet P, Hetru C, Dimarcq JL, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 23:329–344

    Article  CAS  PubMed  Google Scholar 

  • Bulet P, Stöcklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184

    Article  CAS  PubMed  Google Scholar 

  • Carvalho Ade O, Gomes VM (2011) Plant defensins and defensin-like peptides—biological activities and biotechnological applications. Curr Pharm Des 17:4270–4293

    Article  PubMed  Google Scholar 

  • Castro D, Seabra SH, Garcia ES, Souza W, Azambuja P (2007) Trypanosoma cruzi: ultrastructural studies of adhesion lysis and biofilm formation by Serratia marcescens. Exp Parasitol 117:201–207

    Article  CAS  PubMed  Google Scholar 

  • Chen JS, Reddy V, Chen JH, Shlykov MA, Zheng WH, Cho J, Yen MR Jr, Saier M (2012) Phylogenetic characterization of transport protein superfamilies: superiority of superfamily tree programs over those based on multiple alignments. J Mol Microbiol Biotechnol 21:83–96

    Article  PubMed Central  CAS  Google Scholar 

  • Costa J, Freitas-Sibajev MGR, Marchon-Silva V, Pires MQ, Pacheco RS (1997) Isoenzymes detect variation in populations of Triatoma brasiliensis (Hemiptera: Reduviidae: Triatominae). Mem Inst Oswaldo Cruz 92:459–464

    Article  CAS  PubMed  Google Scholar 

  • Coura J (2013) Chagas disease: control, elimination and eradication. Is it possible? Mem Inst Oswaldo Cruz 108:962–967

    Article  PubMed Central  PubMed  Google Scholar 

  • d’Alençon E, Bierne N, Girard PA, Magdelenat G, Gimenez S, Seninet I, Escoubas JM (2013) Evolutionary history of x-tox genes in three lepidopteran species: origin, evolution of primary and secondary structure and alternative splicing generating a repertoire of immune-related proteins. Insect Biochem Mol Biol 43:54–64

    Article  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dassanayake RS, Silva Gunawardene YIN, Tobe SS (2007) Evolutionary selective trends of insect/mosquito antimicrobial defensin peptides containing cysteine-stabilized α/β motifs. Peptides 28:62–75

    Article  CAS  PubMed  Google Scholar 

  • de Paula AS, Diotaiuti L, Galvão C (2007) Systematics and biogeography of Rhodniini (Heteroptera: Reduviidae: Triatominae) based on 16S mitochondrial rDNA sequences. J Biogeogr 34:699–712

    Article  Google Scholar 

  • Dimarcq JL, Bulet P, Hetru C, Hoffmann J (1998) Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers 47:465–477

    Article  CAS  PubMed  Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nature 3:710–720

    CAS  Google Scholar 

  • Garcia ES, Genta FA, Azambuja P, Schaub GA (2010) Interactions between intestinal compounds of triatomines and Trypanosoma cruzi. Trends Parasitol 26:499–505

    Article  CAS  PubMed  Google Scholar 

  • Hetru C, Hoffmann D, Bulet P (1998) Antimicrobial peptides from insects. In: Brey PI, Hultmark D (eds) Molecular mechanisms of immune responses in insects. Chapman and Hall, London, pp 40–66

    Google Scholar 

  • Hoffmann JA (1995) Innate immunity of insects. Curr Opin Immunol 7:4–10

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann JA (1997) Immune responsiveness in vector insects. Proc Natl Acad Sci U S A 94:11152–11153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hypsa V, Tietz DF, Zrzavý J, Rego RO, Galvão C, Jurberg J (2002) Phylogeny and biogeography of Triatominae (Hemiptera: Reduviidae): molecular evidence of a New World origin of the Asiatic clade. Mol Phylogenet Evol 23:447–457

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132

    Chapter  Google Scholar 

  • Jurberg J, Galvão C (2006) Biology, ecology, and systematics of Triatominae (Heteroptera, Reduviidae), vectors of Chagas disease, and implications for human health. In: Rabitsch W (ed) Hug the Bug. For Love of true Bugs. Festschrift zum 70. Geburtstag von Ernst Heiss. Denisia 19, zugleich Kataloge der OÖ Landesmuseen 50, Linz, pp 1096–1116

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kitani H, Naessens J, Kubo M, Nakamura Y, Iraqi F, Gibson J, Yamakawa M (2009) Synthetic nonamer peptides derived from insect defensin mediate the killing of African trypanosomes in axenic culture. Parasitol Res 105:217–225

    Article  PubMed  Google Scholar 

  • Kollien AH, Schaub GA (2000) The development of Trypanosoma cruzi in Triatominae. Parasitol Today 16:381–387

    Article  CAS  PubMed  Google Scholar 

  • Kollien AH, Schmidt J, Schaub GA (1998) Modes of association of Trypanosoma cruzi with the intestinal tract of the vector Triatoma infestans. Acta Trop 70:127–141

    Article  CAS  PubMed  Google Scholar 

  • Lamberty M, Ades S, Uttenweiler-Joseph S, Brookharts G, Bushey D, Hoffmann JA, Bulet P (1999) Insect immunity: isolation from the lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity. J Biol Chem 274:9320–9326

    Article  CAS  PubMed  Google Scholar 

  • Lehane MJ (2005) Transmission of parasites by blood-sucking insects. In: Lehane MJ (ed) The biology of blood-sucking in insects. Cambridge University Press, Cambridge, pp 150–201

    Chapter  Google Scholar 

  • Lima MM, Sarquis O (2008) Is Rhodnius nasutus (Hemiptera; Reduviidae) changing its habitat as a consequence of human activity? Parasitol Res 102:797–800

    Article  CAS  PubMed  Google Scholar 

  • Lopez L, Morales G, Ursic R, Wolff M, Lowenberger C (2003) Isolation and characterization of a novel insect defensin from Rhodnius prolixus, a vector of Chagas disease. Insect Biochem Mol Biol 33:439–447

    Article  CAS  PubMed  Google Scholar 

  • Marcilla A, Bargues MD, Ramsey JM, Magallon-Gastelum E, Salazar-Schettino PM, Abad-Franch F, Dujardin JP, Schofield CJ, Mas-Coma S (2001) The ITS-2 of the nuclear rDNA as a molecular marker for populations, species, and phylogenetic relationships in Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. Mol Phylogenet Evol 18:136–142

    Article  CAS  PubMed  Google Scholar 

  • Marcilla A, Bargues MD, Abad-Franch F, Panzera F, Carcavallo RU, Noireau F, Galvão C, Jurberg J, Miles MA, Dujardin JP, Mas-Coma S (2002) Nuclear rDNA ITS-2 sequences reveal polyphyly of Panstrongylus species (Hemiptera: Reduviidae: Triatominae), vectors of Trypanosoma cruzi. Infect Genet Evol 1:225–235

    Article  CAS  PubMed  Google Scholar 

  • Martínez FH, Villalobos GC, Cevallos AM, De la Torre P, Laclette JP, Alejandre-Aguilar R, Espinoza B (2006) Taxonomic study of the Phyllosoma complex and other triatomine (Insecta: Hemiptera: Reduviidae) species of epidemiological importance in the transmission of Chagas disease: using ITS-2 and mtCytB sequences. Mol Phylogenet Evol 41:279–287

  • Mello CB, Azambuja P, Garcia ES, Ratcliffe NA (1996) Differential in vitro and in vivo behavior of three strains of Trypanosoma cruzi in the gut and hemolymph of Rhodnius prolixus. Exp Parasitol 82:112–121

    Article  CAS  PubMed  Google Scholar 

  • Monteiro FA, Wesson DM, Dotson EM, Schofield CJ, Beard CB (2000) Phylogeny and molecular taxonomy of the Rhodniini derived from mitochondrial and nuclear DNA sequences. Am J Trop Med Hyg 62:460–465

    CAS  PubMed  Google Scholar 

  • Monteiro FA, Donnelly MJ, Beard CB, Costa J (2004) Nested clade and phylogeographic analyses of the Chagas disease vector Triatoma brasiliensis in Northeast Brazil. Mol Phylogenet Evol 32:46–56

    Article  PubMed  Google Scholar 

  • Moreira CJ, Waniek PJ, Valente RH, Carvalho PC, Perales J, Feder D, Geraldo RB, Castro HC, Azambuja P, Ratcliffe NA, Mello CB (2014) Isolation and molecular characterization of a major hemolymph serpin from the triatomine, Panstrongylus megistus. Parasit Vectors 7:23

    Article  PubMed Central  PubMed  Google Scholar 

  • Nayduch D, Cho H, Joyner C (2013) Staphylococcus aureus in the house fly: temporospatial fate of bacteria and expression of the antimicrobial peptide defensin. J Med Entomol 50:171–178

    Article  PubMed Central  PubMed  Google Scholar 

  • Pfeiler E, Bitler BG, Ramsey JM, Palacios-Cardiel C, Markow TA (2006) Genetic variation, population structure, and phylogenetic relationships of Triatoma rubida and T. recurva (Hemiptera: Reduviidae: Triatominae) from the Sonoran Desert, insect vectors of the Chagas’ disease parasite Trypanosoma cruzi. Mol Phylogenet Evol 41:209–221

    Article  CAS  PubMed  Google Scholar 

  • Quisberth S, Waleckx E, Monje M, Chang B, Noireau F, Brenière SF (2011) “Andean” and “non-Andean” ITS-2 and mtCytB haplotypes of Triatoma infestans are observed in the Gran Chaco (Bolivia): population genetics and the origin of reinfestation. Infect Genet Evol 11:1006–1014

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JMC, Genta FA, Sorgine MHF, Logullo R, Mesquita RD, Paiva-Silva GO, Majerowicz D, Medeiros M, Koerich L, Terra WR, Ferreira C, Pimentel AC, Bisch PM, Leite DC, Diniz MMP, Vianez Junior JSGV, Da Silva ML, Araujo RB, Gandara ACP, Brosson S, Salmon D, Bousbata S, González-Caballero N, Silber AM, Alves-Bezerra M, Gondim KC, Silva-Neto MAC, Atella GC, Araujo H, Dias FA, Polycarpo C, Vionette-Amaral RJ, Fampa P, Melo AC, Tanaka AS, Balczun C, Oliveira JH, Gonçalves RL, Lazoski C, Rivera-Pomar R, Diambra L, Schaub GA, Garcia ES, Azambuja P, Braz GR, Oliveira PL (2014) An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus. PLoS Negl Trop Dis 8:e2594

    Article  PubMed Central  PubMed  Google Scholar 

  • Schofield CJ, Galvão C (2009) Classification, evolution and species groups within the Triatominae. Acta Trop 110:88–100

    Article  CAS  PubMed  Google Scholar 

  • Schwarz R, Dayhoff M (1979) Matrices for detecting distant relationships. In: Dayhoff M (ed) Atlas of protein sequences. National Biomedical Research Foundation, Washington D.C., pp. 353–358

  • Schwarz A, Medrano-Mercado N, Schaub GA, Struchiner CJ, Bargues MD, Levy MZ, Ribeiro JMC (2014) An updated insight into the sialotranscriptome of Triatoma infestans: developmental stage and geographic variations. PLoS Negl Trop Dis 8:e3372

    Article  PubMed Central  PubMed  Google Scholar 

  • Seufi AM, Hafez EE, Galal FH (2011) Identification, phylogenetic analysis and expression profile of an anionic insect defensin gene, with antibacterial activity, from bacterial-challenged cotton leafworm, Spodoptera littoralis. BCM Mol Biol 12:47

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tartarotti E, Ceron CR (2005) Ribosomal DNA ITS-1 intergenic spacer polymorphism in triatomines (Triatominae, Heteroptera). Biochem Genet 43:365–373

    Article  CAS  PubMed  Google Scholar 

  • Tartarotti E, Azeredo-Oliveira MT, Ceron CR (2006) Phylogenetic approach to the study of Triatomines (Triatominae, Heteroptera). Braz J Biol 66:703–708

    Article  CAS  PubMed  Google Scholar 

  • Thevessin K, Kristensen HH, Thomma BPHJ, Cammue BPA, François IEJA (2007) Therapeutic potential antifungal plant and insect defensins. Drug Discov Today 12:966–971

    Article  Google Scholar 

  • Thomma BP, Cammue BP, Thevissen K (2003) Mode of action of plant defensins suggests therapeutic potential. Curr Drug Targets Infect Disord 3:1–8

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgis DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment though sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vieira CS, Waniek PJ, Mattos DP, Castro DP, Mello CB, Ratcliffe NA, Garcia ES, Azambuja P (2014) Humoral responses in Rhodnius prolixus: bacterial feeding induces differential patterns of antibacterial activity and enhances mRNA levels of antimicrobial peptides in the midgut. Parasit Vectors 7:232

    Article  PubMed Central  PubMed  Google Scholar 

  • Vieira CS, Mattos DP, Waniek PJ, Santangelo JM, Figueiredo MB, Gumiel M, da Mota FF, Castro DP, Garcia ES, Azambuja P (2015) Rhodnius prolixus interaction with Trypanosoma rangeli: modulation of the immune system and microbiota population. Parasit Vectors 8:135

    Article  PubMed Central  PubMed  Google Scholar 

  • Waniek PJ, Hendgen-Cotta UB, Stock P, Mayer C, Kollien AH, Schaub GA (2005) Serine proteinases of the human body louse (Pediculus humanus): sequence characterization and expression patterns. Parasitol Res 97:486–500

    Article  PubMed  Google Scholar 

  • Waniek PJ, Castro HC, Sathler PC, Miceli L, Jansen AM, Araújo CAC (2009) Two novel defensin-encoding genes of the Chagas disease vector Triatoma brasiliensis (Reduviidae, Triatominae): gene expression and peptide-structure modeling. J Insect Physiol 55:840–848

    Article  CAS  PubMed  Google Scholar 

  • Waniek PJ, Jansen AM, Araújo CAC (2011) Trypanosoma cruzi infection modulates the expression of Triatoma brasiliensis def1 in the midgut. Vector Borne Zoonotic Dis 11:845–847

    Article  PubMed  Google Scholar 

  • Weirauch C (2008) Cladistic analysis of Reduviidae (Heteroptera: Cimicomorpha) based on morphological characters. Syst Entomol 33:229–274

    Article  Google Scholar 

  • Weirauch C, Munro JB (2009) Molecular phylogeny of the assassin bugs (Hemiptera: Reduviidae), based on mitochondrial and nuclear ribosomal genes. Mol Phylogenet Evol 53:287–299

    Article  CAS  PubMed  Google Scholar 

  • Wiesner J, Vilcinskas A (2010) Antimicrobial peptides: the ancient arm of the human immune system. Virulence 1:440–464

    Article  PubMed  Google Scholar 

  • Yao H, Song J, Liu C, Luo K, Han J, Li Y, Pang X, Xu H, Zhu Y, Xiao P, Chen S (2010) Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS One 5:e13102

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu S (2008) Discovery of six families of fungal defensing-like peptides provides insights into origin and evolution of the CSαβ defensins. Mol Immunol 45:828–838

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Fundação de Amparo à Pesquisa no Estado do Rio de Janeiro-FAPERJ (E-26/100.456/2007; E-26/110.403/2011), Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (PDJ: 151187/2009-6). CNPq – Ministério da Saúde/Secretaria de Vigilância Sanitária (SVS). Authors also thank Pesquisador Visitante FIOCRUZ/CNPq (158817/2010-9). CACA is a Post-doctor fellow by Capes/PNPD in Biodiversidade e Saúde-IOC/FIOCRUZ Research Fellow and PJW is a PDS FAPERJ Fellow (E-26/200.117/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Josef Waniek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental file 1

Similarity in percent of cDNA and deduced amino acid sequences of Hemipteran defensins analyzed in the present study. (DOC 251 kb)

Supplemental file 2

Maximum likelihood dendrogram of Triatominae defensin encoding cDNA sequences. One sequence of Pyrrhocoris apterus and two of Nilaparvata lugens were used as outgroup. Branch labels show the percentages of bootstrap samples supporting that branch. (PPT 130 kb)

Supplemental file 3

Maximum likelihood dendrogram of deduced Triatominae defensin amino acid sequences. Sequences of Pyrrhocoris apterus and Nilaparvata lugens were used as outgroup. Branch labels show the percentages of bootstrap samples supporting that branch. (PPT 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araújo, C.A.C., Lima, A.C.B., Jansen, A.M. et al. Genes encoding defensins of important Chagas disease vectors used for phylogenetic studies. Parasitol Res 114, 4503–4511 (2015). https://doi.org/10.1007/s00436-015-4694-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4694-6

Keywords

Navigation