Skip to main content

Advertisement

Log in

Schistosoma japonicum protein SjP40 inhibits TGF-β1-induced activation of hepatic stellate cells

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

SjP40 is a major egg antigen of Schistosoma japonicum. In the present study, the authors investigated the effect of SjP40 in vitro on transforming growth factor-β1 (TGF-β1)- stimulated hepatic stellate cells (HSCs). LX-2, an immortalized human HSC line, was treated with purified recombinant SjP40 (rSjP40) in the presence or absence of TGF-β1. Quantitative real-time polymerase chain reaction and western blot analysis were performed to determine messenger ribonucleic acid and protein of fibrogenic genes and TGF-β signaling pathway. The results showed that expression of fibrogenic genes was significantly reduced by rSjP40. Furthermore, rSjP40 also suppressed the TGF-β1-induced upregulation of Smads and ERK proteins. We also found that the effect of rSjP40 on HSCs was similar to SB431542, an inhibitor of type I TGF-β receptor. In conclusion, the data suggest that SjP40 attenuates HSC activation, which might be, at least in part, mediated by inhibiting the TGF-β and ERK signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abouel-Nour MF, Lotfy M, Attallah AM, Doughty BL (2006) Schistosoma mansoni major egg antigen Smp40: molecular modeling and potential immunoreactivity for anti-pathology vaccine development. Mem Inst Oswaldo Cruz 101(4):365–372

    Article  CAS  PubMed  Google Scholar 

  • Anthony B, Mathieson W, de Castro-Borges W, Allen J (2010) Schistosoma mansoni: egg-induced downregulation of hepatic stellate cell activation and fibrogenesis. Exp Parasitol 124(4):409–420

    Article  CAS  PubMed  Google Scholar 

  • Anthony BJ, Ramm GA, McManus DP (2012) Role of resident liver cells in the pathogenesis of schistosomiasis. Trends Parasitol 28(12):572–579

    Article  CAS  PubMed  Google Scholar 

  • Anthony BJ, James KR, Gobert GN, Ramm GA, McManus DP (2013) Schistosoma eggs induce a proinflammatory, anti-fibrogenic phenotype in hepatic stellate cells. Plos One 8(6):e68479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Asahi H, Stadecker MJ (2003) Analysis of egg antigens inducing hepatic lesions in schistosome infection. Parasitol Int 52(4):361–367

    Article  CAS  PubMed  Google Scholar 

  • Bartley PB, Ramm GA, Jones MK, Ruddell RG, Li Y, McManus DP (2006) A contributory role for activated hepatic stellate cells in the dynamics of Schistosoma japonicum egg-induced fibrosis. Int J Parasitol 36(9):993–1001

    Article  CAS  PubMed  Google Scholar 

  • Breitkopf K, Godoy P, Ciuclan L, Singer MV, Dooley S (2006) TGF-beta/Smad signaling in the injured liver. Z Gastroenterol 44(1):57–66

    Article  CAS  PubMed  Google Scholar 

  • Burke ML, Jones MK, Gobert GN, Li YS, Ellis MK, McManus DP (2009) Immunopathogenesis of human schistosomiasis. Parasite Immunol 31(4):163–176

    Article  CAS  PubMed  Google Scholar 

  • Cass CL, Johnson JR, Califf LL, Xu T, Hernandez HJ, Stadecker MJ, Yates JR 3rd, Williams DL (2007) Proteomic analysis of Schistosoma mansoni egg secretions. Mol Biochem Parasitol 155(2):84–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castilho-Fernandes A, de Almeida DC, Fontes AM, Melo FU, Picanco-Castro V, Freitas MC, Orellana MD, Palma PV, Hackett PB, Friedman SL, Covas DT (2011) Human hepatic stellate cell line (LX-2) exhibits characteristics of bone marrow-derived mesenchymal stem cells. Exp Mol Pathol 91(3):664–672

    Article  CAS  PubMed  Google Scholar 

  • Chang D, Ramalho LN, Ramalho FS, Martinelli AL, Zucoloto S (2006) Hepatic stellate cells in human schistosomiasis mansoni: a comparative immunohistochemical study with liver cirrhosis. Acta Trop 97(3):318–323

    Article  CAS  PubMed  Google Scholar 

  • de Gouville AC, Boullay V, Krysa G, Pilot J, Brusq JM, Loriolle F, Gauthier JM, Papworth SA, Laroze A, Gellibert F, Huet S (2005) Inhibition of TGF-beta signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis. Br J Pharmacol 145(2):166–177

    Article  PubMed Central  PubMed  Google Scholar 

  • Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958):577–584

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Gu X, Zhu D, Sun W, Chen J, Feng J, Song K, Xu F, He X, He X (2014) Schistosoma japonicum soluble egg antigens induce apoptosis and inhibit activation of hepatic stellate cells: a possible molecular mechanism. Int J Parasitol 44(3–4):217–224

    Article  CAS  PubMed  Google Scholar 

  • Guyot C, Lepreux S, Combe C, Doudnikoff E, Bioulac-Sage P, Balabaud C, Desmouliere A (2006) Hepatic fibrosis and cirrhosis: the (myo)fibroblastic cell subpopulations involved. Int J Biochem Cell Biol 38(2):135–151

    CAS  PubMed  Google Scholar 

  • Huang T, David L, Mendoza V, Yang Y, Villarreal M, De K, Sun L, Fang X, Lopez-Casillas F, Wrana JL, Hinck AP (2011) TGF-beta signalling is mediated by two autonomously functioning TbetaRI:TbetaRII pairs. EMBO J 30(7):1263–1276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inagaki Y, Okazaki I (2007) Emerging insights into transforming growth factor beta Smad signal in hepatic fibrogenesis. Gut 56(2):284–292

  • Islam SS, Mokhtari RB, El Hout Y, Azadi MA, Alauddin M, Yeger H, Farhat WA (2014) TGF-beta1 induces EMT reprogramming of porcine bladder urothelial cells into collagen producing fibroblasts-like cells in a Smad2/Smad3-dependent manner. J Cell Commun Sign 8(1):39–58

    Article  Google Scholar 

  • Laping NJ, Grygielko E, Mathur A, Butter S, Bomberger J, Tweed C, Martin W, Fornwald J, Lehr R, Harling J, Gaster L, Callahan JF, Olson BA (2002) Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol Pharmacol 62(1):58–64

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Lu J, Hu W, Wang SY, Cui SJ, Chi M, Yan Q, Wang XR, Song HD, Xu XN, Wang JJ, Zhang XL, Zhang X, Wang ZQ, Xue CL, Brindley PJ, McManus DP, Yang PY, Feng Z, Chen Z, Han ZG (2006) New perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum. PLoS Pathog 2(4):e29

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Wang Z, Kwong SQ, Lui EL, Friedman SL, Li FR, Lam RW, Zhang GC, Zhang H, Ye T (2011) Inhibition of PDGF, TGF-beta, and Abl signaling and reduction of liver fibrosis by the small molecule Bcr-Abl tyrosine kinase antagonist Nilotinib. J Hepatol 55(3):612–625

    Article  CAS  PubMed  Google Scholar 

  • Lv Z, Song Y, Xue D, Zhang W, Cheng Y, Xu L (2010) Effect of salvianolic-acid B on inhibiting MAPK signaling induced by transforming growth factor-beta1 in activated rat hepatic stellate cells. J Ethnopharmacol 132(2):384–392

    Article  CAS  PubMed  Google Scholar 

  • Mu Y, Gudey SK, Landstrom M (2012) Non-Smad signaling pathways. Cell Tissue Res 347(1):11–20

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Yang H, Zhu T, Zhao M, Deng Y, Liu B, Shen H, Hu G, Wang Z, Tao L (2013) The antihepatic fibrotic effects of fluorofenidone via MAPK signalling pathways. Europ J Clin Investig 43(4):358–368

    Article  CAS  Google Scholar 

  • Schiller M, Javelaud D, Mauviel A (2004) TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci 35(2):83–92

    Article  CAS  PubMed  Google Scholar 

  • Stadecker MJ, Hernandez HJ, Asahi H (2001) The identification and characterization of new immunogenic egg components: implications for evaluation and control of the immunopathogenic T cell response in schistosomiasis. Mem Inst Oswaldo Cruz 96(Suppl):29–33

    CAS  PubMed  Google Scholar 

  • Tsukada S, Parsons CJ, Rippe RA (2006) Mechanisms of liver fibrosis. Clin Chim Acta 364(1–2):33–60

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Xu F, Zhu D, Duan Y, Chen J, Sun X, He X, Li P, Sun W, Feng J (2014) Schistosoma japonicum soluble egg antigens facilitate hepatic stellate cell apoptosis by downregulating Akt expression and upregulating p53 and DR5 expression. PLoS Negl Trop Dis 8(8):e3106

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu L, Hui AY, Albanis E, Arthur MJ, O'Byrne SM, Blaner WS, Mukherjee P, Friedman SL, Eng FJ (2005) Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut 54(1):142–151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Li H, Hao J, Zhou Y, Liu W (2014) High glucose increases Cdk5 activity in podocytes via transforming growth factor-beta1 signaling pathway. Exp Cell Res 326(2):219–229

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Chen W, Yang L, Chen L, Stimpson SA, Diehl AM (2006) PPARgamma agonists prevent TGFbeta1/Smad3-signaling in human hepatic stellate cells. Biochem Biophys Res Commun 350(2):385–391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou XH, Wu JY, Huang XQ, Kunnon SP, Zhu XQ, Chen XG (2010) Identification and characterization of Schistosoma japonicum Sjp40, a potential antigen candidate for the early diagnosis of schistosomiasis. Diag Microbiol Infect Dis 67(4):337–345

    Article  CAS  Google Scholar 

  • Zhu D, He X, Duan Y, Chen J, Wang J, Sun X, Qian H, Feng J, Sun W, Xu F, Zhang L (2014) Expression of microRNA-454 in TGF-beta1-stimulated hepatic stellate cells and in mouse livers infected with Schistosoma japonicum. Parasit Vectors 7:148

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Numbers 81471975, 81171589, and 81401683), the Jiangsu provincial Natural Science Foundation (Grant Number BK20140435), the Natural Science Research Project of the Colleges and Universities of Jiangsu Province (Grant Number 14KJD180002), the Natural Science Foundation of Nantong City (Grant Number BK2014033), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Conflicts of interest

The authors declared that no conflicts of interest existed in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinong Duan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Morphology change of LX-2 cells. Morphology of LX-2 cells (200×) was observed with an inverted microscope. LX-2 cells with no treatment, represented as activated HSCs, displayed a flat phenotype. The cells treated with rSjP40 exhibited a more elongated cell phenotype. (GIF 65 kb)

High resolution image (TIFF 1085 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhang, L., Wang, J. et al. Schistosoma japonicum protein SjP40 inhibits TGF-β1-induced activation of hepatic stellate cells. Parasitol Res 114, 4251–4257 (2015). https://doi.org/10.1007/s00436-015-4663-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4663-0

Keywords

Navigation