Skip to main content

Advertisement

Log in

Multiple Cryptosporidium parvum subtypes detected in a unique isolate of a Chilean neonatal calf with diarrhea

  • Short Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

To further understand the composition of population of parasite in a single host, we analyzed the GP60 gene of Cryptosporidium parvum amplified from DNA of a randomly selected isolate found in the feces of a diarrheic calf from a dairy farm in Central Chile. Direct sequencing of the amplicon yield the IIaA17G4R1 C. parvum subtype. The same amplicon was cloned in Escherichia coli (22 clones) and sequenced, yielding three different GP60 subtypes, IIaA17G4R1 (16/22), IIaA16G4R1 (1/22), and IIaA15G4R1 (1/22), and four sequences with nucleotide substitutions in the serine repeats, which subtype would be otherwise IIaA17G4R1. It is thus possible to determine allelic polymorphism using Sanger sequencing with an additional step of bacterial cloning. The results also indicate the necessity to further characterize parasite populations in a single host to better understand the dynamics of Cryptosporidium epidemiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Caccio SM, Sannella AR, Mariano V, Valentini S, Berti F, Tosini F, Pozio E (2013) A rare Cryptosporidium parvum genotype associated with infection of lambs and zoonotic transmission in Italy. Vet Parasitol 191:128–131

    Article  PubMed  Google Scholar 

  • Del Coco VF, Córdoba MA, Bilbao G, de Almeida Castro AP, Basualdo JA, Fayer R, Santin M (2014) Cryptosporidium parvum GP60 subtypes in dairy cattle from Buenos Aires, Argentina. Res Vet Sci 96:311–314

    Article  PubMed  Google Scholar 

  • Grinberg A, Biggs PJ, Dukkipati VS, George TT (2013) Extensive intra-host genetic diversity uncovered in Cryptosporidium parvum using Next Generation Sequencing. Infect Genet Evol 15:18–24

    Article  CAS  PubMed  Google Scholar 

  • Henriksen SA, Pohlenz JF (1981) Staining of Cryptosporidia by a modified Ziehl-Neelsen technique. Acta Vet Scand 22:594–596

    CAS  PubMed  Google Scholar 

  • Jex AR, Gasser RB (2010) Genetic richness and diversity in Cryptosporidium hominis and C. parvum reveals major knowledge gaps and a need for the application of “next generation” technologies—research review. Biotechnol Adv 28:17–26

    Article  PubMed  Google Scholar 

  • Lendner M, Böttcher D, Delling C, Ojo KK, Van Voorhis WC, Daugschies A (2015) A novel CDPK1 inhibitor-a potential treatment for cryptosporidiosis in calves? Parasitol Res 114:335–336

    Article  PubMed  Google Scholar 

  • Nydam DV, Mohammed HO (2005) Quantitative risk assessment of Cryptosporidium species infection in dairy calves. J Dairy Sci 88:3932–3943

    Article  CAS  PubMed  Google Scholar 

  • Quilez J, Hadfield SJ, Ramo A, Vergara-Castiblanco C, Chalmers RM (2014) Validation of fragment analysis by capillary electrophoresis to resolve mixed infections by Cryptosporidium parvum subpopulations. Parasitol Res 113:1821–1825

    Article  PubMed  Google Scholar 

  • Quinones-Mateu ME, Avila S, Reyes-Teran G, Martinez MA (2014) Deep sequencing: becoming a critical tool in clinical virology. J Clin Virol 61:9–19

    Article  PubMed  Google Scholar 

  • Rieux A, Chartier C, Pors I, Delafosse A, Paraud C (2013a) Molecular characterization of Cryptosporidium isolates from high-excreting young dairy calves in dairy cattle herds in Western France. Parasitol Res 112:3423–3431

    Article  CAS  PubMed  Google Scholar 

  • Rieux A, Paraud C, Pors I, Chartier C (2013b) Molecular characterization of Cryptosporidium isolates from pre-weaned calves in Western France in relation to age. Vet Parasitol 197:7–12

    Article  CAS  PubMed  Google Scholar 

  • Santin M (2013) Clinical and subclinical infections with Cryptosporidium in animals. N Z Vet J 61:1–10

    Article  CAS  PubMed  Google Scholar 

  • Shrestha RD, Grinberg A, Dukkipati VS, Pleydell EJ, Prattley DJ, French NP (2014) Infections with multiple Cryptosporidium species and new genetic variants in young dairy calves on a farm located within a drinking water catchment area in New Zealand. Vet Parasitol 202:287–291

    Article  PubMed  Google Scholar 

  • Smith RP, Clifton-Hadley FA, Cheney T, Giles M (2014) Prevalence and molecular typing of Cryptosporidium in dairy cattle in England and Wales and examination of potential on-farm transmission routes. Vet Parasitol 204:111–119

    Article  CAS  PubMed  Google Scholar 

  • Strong WB, Gut J, Nelson RG (2000) Cloning and sequence analysis of a highly polymorphic Cryptosporidium parvum gene encoding a 60-kilodalton glycoprotein and characterization of its 15- and 45-kilodalton zoite surface antigen products. Infect Immun 68:4117–4134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sulaiman IM, Hira PR, Zhou L, Al-Ali FM, Al-Shelahi FA, Shweiki HM, Iqbal J, Khalid N, Xiao L (2005) Unique endemicity of cryptosporidiosis in children in Kuwait. J Clin Microbiol 43:2805–2809

    Article  PubMed Central  PubMed  Google Scholar 

  • Waldron LS, Dimeski B, Beggs PJ, Ferrari BC, Power ML (2011) Molecular epidemiology, spatiotemporal analysis, and ecology of sporadic human cryptosporidiosis in Australia. Appl Environ Microbiol 77:7757–7765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Widmer G (2009) Meta-analysis of a polymorphic surface glycoprotein of the parasitic protozoa Cryptosporidium parvum and Cryptosporidium hominis. Epidemiol Infect 137:1800–1808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Widmer G, Ras R, Chalmers RM, Elwin K, Desoky E, Badawy A (2014) Population structure of natural and propagated isolates of Cryptosporidium parvum, C. hominis and C. meleagridis. Environ Microbiol. doi:10.1111/1462-2920.12447

    PubMed  Google Scholar 

  • Xiao L (2010) Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol 124:80–89

    Article  CAS  PubMed  Google Scholar 

  • Zambriski JA, Nydam DV, Wilcox ZJ, Bowman DD, Mohammed HO, Liotta JL (2013) Cryptosporidium parvum: determination of ID50 and the dose–response relationship in experimentally challenged dairy calves. Vet Parasitol 197:104–112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) project 1121035 (RM), Ministry of Education, Chile. We also thank the graduate students Aylwin MP, Díaz-Lee A, Muñoz P, Muñoz C, Raffo E, and Cerva JL attendees of the Metagenomics of Parasitic Agents Course, 2013, Santiago, Chile, who partially did valuable technical work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Mercado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercado, R., Peña, S., Ozaki, L.S. et al. Multiple Cryptosporidium parvum subtypes detected in a unique isolate of a Chilean neonatal calf with diarrhea. Parasitol Res 114, 1985–1988 (2015). https://doi.org/10.1007/s00436-015-4364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4364-8

Keywords

Navigation