Skip to main content
Log in

Culex pipiens s.l. and Culex torrentium (Culicidae) in Wrocław area (Poland): occurrence and breeding site preferences of mosquito vectors

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Both ornithophilic mosquito species, Culex pipiens s.l. (L.) and Culex torrentium (Martini, 1925), occur sympatric in temperate Europe. They are presumed to be primary vectors of West Nile and Sindbis viruses. Differentiation of these morphologically similar Culex species is essential for evaluation of different vector roles, for mosquito surveillance and integrated control strategies. Cx. torrentium has been neglected or erroneously determined as Cx. pipiens s.l. in some previous studies, because only males of both species can be diagnosed reliably by morphology. Thus, knowledge about species abundance, geographical distribution, breeding site preferences and the zoonotic risk assessment is incomplete also in Poland. In Wrocław area (Silesian Lowland), besides typical urban breeding sites, huge sewage irrigation fields provide suitable breeding conditions for Culex species. They are also inhabited by 180 resident and migratory bird species serving as potential virus reservoirs. In this study, morphology of larvae and males as well as species diagnostic enzyme markers, namely adenylate kinase (AK) and 2-hydroxybutyrate dehydrogenase (HBDH), were used to discriminate Cx. pipiens s.l. and Cx. torrentium. In a total of 650 Culex larvae from 24 natural and artificial breeding sites, Cx. pipiens s.l. had a proportion of 94.0 % and Cx. torrentium only 6.0 %. It could be shown that both species are well adapted to various breeding site types like ditches, catch basins, flower pots and buckets with diverse water quality. Cx. torrentium preferred more artificial water containers in urban surrounding (12 % species proportion), whereas in semi-natural breeding sites, Cx. torrentium was rare (3 %). In 12 of 24 breeding sites, larvae of both species have been found associated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. This mosquito-borne zoonotic flavivirus causing neuroinvasive disease in temperate and tropical regions of the world was also spread to Europe, beyond the Mediterranean Basin, and a new strain of the virus was identified in Italy only in 2012. The main mode of WNV transmission is via various species of mosquitoes, which are the prime vector, with birds being the most commonly infected animals and serving as the prime reservoir host, especially passerines. WNV also infects various mammal species, including humans, and has been identified in reptilian species, including alligators and crocodiles, and also in amphibians.

  2. Sindbis complex (Sindbis/subtypes Ockelbo, Whataroa, Babanki and Kyzylagach viruses. SINV, a member of the western equine encephalomyelitis complex of the genus Alphavirus in the family Togaviridae), detected in Culex mosquitos in 1952, is widely spread in the Old World and identified in birds, representatives of order Passeriformes, Galliformes (chicken), Anseriformes and Ciconiiformes, and also in domestic and wild mammal species, and humans (Kurkela et al. 2008).

  3. We wish to express our sincere thanks to Department and Observatory of Climatology and Meteorology of the Wroclaw University for providing meteorological data relating to the years 2002–2012.

References

  • Becker N, Petrić D, Zgomba M, Boase C, Dahl C, Lane J, Kaiser A (2010) Mosquitoes and their control, 2nd edn. Kluwer Academic / Plenum Publishers, New York

    Book  Google Scholar 

  • Becker N, Jöst A, Weitzel T (2012) The Culex pipiens complex in Europe. J Am Mosq Control Assoc 28(4):53–67

    Article  PubMed  Google Scholar 

  • Börstler J, Lühken R, Rudolf M, Steinke S, Melaun C, Becker S, Garms R, Krüger A (2014) The use of morphometric wing characters to discriminate female Culex pipiens and Culex torrentium. J Vector Ecol 39(1):204–212

    Article  PubMed  Google Scholar 

  • Cichocki Z (Ed) (2006) Środowisko Wrocławia. Agencja Wydawnicza „Argi” sc 212pp

  • Dahl C (1988) Taxonomic studies on Culex pipiens and Cx. torrentium. In: Service MW (ed) Biosystematics of haematophagous insects. Clarendon, Oxford, pp 149–175

    Google Scholar 

  • Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, Mogi M, Fleischer RC, Wilkerson RC (2004) Emerging vectors in the Culex pipiens complex. Science 303:1535–1538

    Article  CAS  PubMed  Google Scholar 

  • Gingrich JB, Williams GM (2005) Host-feeding patterns of suspected West Nile virus mosquito vectors in Delaware, 2001–2002. J Am Mosq Control Assoc 21:194–200

    Article  PubMed  Google Scholar 

  • Gutsevich AV, Monchadskii AS, Shtakel’berg AA (1971) Fauna SSSR, Family Culicidae. Leningrad Akad Nauk SSSR Zool Inst N S No 100, English translation: Israel Program for Scientific Translations 3(4):384pp

  • Harbach RE, Dahl C, White G (1985) Culex (Culex) pipiens Linnaeus (Diptera: Culicidae): concepts, type designations, and description. Proc Entomol Soc Wash 87:1–24

    Google Scholar 

  • Hesson J, Lundström J, Halvarsson P, Erixon P, Collado A (2010) A sensitive and reliable restriction enzyme method to distinguish between Culex torrentium and Culex pipiens (Diptera: Culicidae). Med Vet Entomol 24:142–149

    Article  CAS  PubMed  Google Scholar 

  • Hesson JC, Rettich F, Merdic E, Vignjevic G, Ostman O, Schäfer M, Schaffner F, Foussadier R, Besnard G, Medlock J, Scholte E-J, Lundström JO (2014) The arbovirus vector Culex torrentium is more prevalent than Culex pipiens in northern and central Europe. Med Vet Entomol 28:179–186

    Article  CAS  PubMed  Google Scholar 

  • Hubálek Z (2008) Mosquito-borne viruses in Europe. Parasitol Res 103(1):29–43

    Article  Google Scholar 

  • Kondracki J (2000) Geografia regionalna Polski. PWN, Warszawa

    Google Scholar 

  • Kowalska-Ulczyńska B, Giłka W (2003) Komary (Diptera: Culicidae) miejscowości Wyskok na Mazurach. Wiadomości entomologiczne 22(2):91–100

    Google Scholar 

  • Kubica-Biernat B (1999) Distribution of mosquitoes (Diptera: Culicidae) in Poland. Eur Mosq Bull 5:1–17

    Google Scholar 

  • Kurkela S, Rätti O, Huhtamo E, Uzcátegui NY, Nuorti P, Laakkonen Tytti Manni J, Helle P, Vaheri A, Vapalahti O (2008) Sindbis virus infection in resident birds, migratory birds, and humans, Finland. Emerg Infect Dis 14(1):41–47. doi:10.3201/eid1401.070510

    Article  PubMed Central  PubMed  Google Scholar 

  • Lühken R, Pfitzner WP, Börstler J, Garms R, Huber K, Schork N, Steinke S, Kiel E, Becker N, Tannich E, Krüger A (2014) Field evaluation of four widely used mosquito traps in Central Europe. Parasit Vectors 7:268

    Article  PubMed Central  PubMed  Google Scholar 

  • Lundström JO (1994) Vector competence of Western European mosquitoes for arboviruses: a review of field and experimental studies. Bull Soc Vector Ecol 19:23–36

    Google Scholar 

  • Mohrig W (1969) Die Culiciden Deutschlands. Parasitologische Schriftenreihe 18:260

    Google Scholar 

  • Petrić D, Zgomba M, Bellini R, Veronesi R, Kaiser A, Becker N (1999) Validation of CO2 Trap Data in three European Regions. In: Proc 3rd Int Conf Urban Pests., pp 437–445

    Google Scholar 

  • Reusken C, De Vries A, Ceelen E, Beeuwkes J, Scholte EJ (2011) A study of the circulation of west Nile virus, Sindbis virus, Batai virus and Usutu virus in mosquitoes in a potential high risk area for arbovirus circulation in the Netherlands, “De Oostvaardersplassen”. J Eur Mosq Control Ass 29:66–81

    Google Scholar 

  • Rydzanicz K, Lonc E (2003) Species composition and seasonal dynamics of mosquito larvae in the Wrocław area, Poland. J Vector Ecol 28:255–266

    CAS  PubMed  Google Scholar 

  • Rydzanicz K, Lonc E, Kiewra D, DeChant P, Krause S, Becker N (2009) Evaluation of three microbial formulations against Culex pipiens pipiens larvae in irrigation fields in Wrocław, Poland. J Am Mosq Control Assoc 25:140–148

    Article  PubMed  Google Scholar 

  • Rydzanicz K, Hoffman K, Jawień P, Kiewra D, Becker N (2011) Implementation of geographic information system (GIS) in an environment friendly mosquito control programme in irrigation fields in Wrocław (Poland). J Eur Mosq Control Ass 29:1–12

    Google Scholar 

  • Schäfer ML, Lundström JO, Pfeffer M, Lundkvist E, Ladin J (2004) Biological diversity versus risk for mosquito nuisance and disease transmission in constructed wetlands in southern Sweden. Med Vet Entomol 18:256–267

    Article  PubMed  Google Scholar 

  • Skierska B (1963) Przegląd piśmiennictwa dotyczącego komarów (Culicidae) z obszarów Polski oraz rejestracja i rejonizacja tych owadów na terenie naszego kraju. Wiad Parazytol 9:579–597

    Google Scholar 

  • Skierska B (1971) Klucze do oznaczania owadów Polski. Część XXVIII. Muchówki-Diptera. Zeszyt 9a. Komary-Culicidae. Larwy i poczwarki (z uwzględnieniem jaj niektórych gatunków). PWN, Warszawa

  • Skierska B (1977) Klucze do oznaczania owadów Polski. Część XXVIII. Muchówki-Diptera. Zeszyt 9b. Komary-Culicidae. Postacie dojrzałe. PWN, Warszawa

  • Słychan M (1996) Ptaki pól irygacyjnych Wrocławia. Ptaki Śląska 11:133–150

    Google Scholar 

  • Snow K, Medlock JM (2008) The mosquitoes of Epping forest, Essex, UK. J Eur Mosq Control Ass 26:9–17

    Google Scholar 

  • Struppe T (1989) Biologie und Ökologie von Culex torrentium (martini) unter besonderer Berücksichtigung seiner Beziehungen im menschlichen Siedlungsbereich. Angew Zool 17:257–86

    Google Scholar 

  • Utrio P (1976) Identification Key to Finnish mosquito larvae (Diptera, Culicidae). Annales Agriculturar Fenniae 15:128–136

    Google Scholar 

  • Vinogradova EB, Shaikevich EV, Ivanitsky AV (2007) A study of the distribution of the Culex pipiens complex (Insecta: Diptera: Culicidae) mosquitoes in the European part of Russia by molecular methods of identification. Comp Cytogenetics 1:129–138

    Google Scholar 

  • Wegner E (2009) A study of mosquito fauna (Diptera: Culicidae) and the phenology of the species recorded in Wilanów (Warsaw, Poland). J Eur Mosq Control Ass 27:23–32

    Google Scholar 

  • Weitzel T, Collado A, Jöst A, Pietsch K, Storch V, Becker N (2009) Genetic differentiation of populations within the Culex pipiens complex (Diptera: Culicidae) and phylogeny of related species. J Am Mosq Control Assoc 25:6–17

    Article  CAS  PubMed  Google Scholar 

  • Weitzel T, Braun K, Collado A, Jöst A, Becker N (2011) Distribution and frequency of Culex pipiens and Culex torrentium (Culicidae) in Europe and diagnostic allozyme markers. J Eur Mosq Control Ass 29:22–37

    Google Scholar 

  • Werblow A, Bolius S, Dorresteijn AWC, Melaun C, Klimpel S (2013) Diversity of Culex torrentium Martini, 1925—a potential vector of arboviruses and filaria in Europe. Parasitol Res 112(7):2495–2501

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Weitzel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weitzel, T., Jawień, P., Rydzanicz, K. et al. Culex pipiens s.l. and Culex torrentium (Culicidae) in Wrocław area (Poland): occurrence and breeding site preferences of mosquito vectors. Parasitol Res 114, 289–295 (2015). https://doi.org/10.1007/s00436-014-4193-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4193-1

Keywords

Navigation