Skip to main content
Log in

Phylogeny and micro-habitats utilized by lizards determine the composition of their endoparasites in the semiarid Caatinga of Northeast Brazil

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Trophic networks can have architectonic configurations influenced by historical and ecological factors. The objective of this study was to analyze the architecture of networks between lizards, their endoparasites, diet, and micro-habitat, aiming to understand which factors exert an influence on the composition of the species of parasites. All networks showed a compartmentalized pattern. There was a positive relation between diet and the diversity of endoparasites. Our analyses also demonstrated that phylogeny and the use of micro-habitat influenced the composition of species of endoparasites and diet pattern of lizards. The principal factor that explained the modularity of the network was the foraging strategy, with segregation between the “active foragers” and “sit-and-wait” lizards. Our analyses also demonstrated that historical (phylogeny) and ecological factors (use of micro-habitat by the lizards) influenced the composition of parasite communities. These results corroborate other studies with ectoparasites, which indicate phylogeny and micro-habitat as determinants in the composition of parasitic fauna. The influence of phylogeny can be the result of coevolution between parasites and lizards in the Caatinga, and the influence of micro-habitat should be a result of adaptations of species of parasites to occupy the same categories of micro-habitats as hosts, thus favoring contagion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allesina S, Pascual M (2007) Network structure, predator–prey modules, and stability in large food webs. Theor Ecol 1:55–64

    Article  Google Scholar 

  • Andrade-Lima D (1981) The Caatingas dominium. Rev Bras Bot 4:149–153

    Google Scholar 

  • Bascompte J (2010) Structure and dynamics of ecological networks. Science 329:765–766

    Article  PubMed  CAS  Google Scholar 

  • Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant–animal mutualistic networks. Proc Natl Acad Sci U S A 100:9383–9387

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brooks DR, León-Règagnon V, McLennan DA, Zelmer D (2006) Ecological fitting as a determinant of the community structure of platyhelminth parasites of anurans. Ecology 87:76–85

    Article  Google Scholar 

  • Brose U, Jonsson T, Berlow EL, Warren P, Banasek-Richter C, Bersier LF, Blanchard JL, Brey T, Carpenter SR, Blandenier MFC, Cushing L, Dawah HA, Dell T, Edwards F, Harper-Smith S, Jacob U, Ledger ME, Martinez ND, Memmott J, Mintenbeck K, Pinnegar JK, Rall BC, Rayner TS, Reuman DC, Ruess L, Ulrich W, Williams RJ, Woodward G, Cohen JE (2006) Consumer–resource body-size relationships in natural food webs. Ecology 87:2411–2417

    Article  PubMed  Google Scholar 

  • Bush AO, Lafferty KD, Lotz JM, Shostaki AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583

    Article  PubMed  CAS  Google Scholar 

  • Cattin MF, Bersier LF, Banašek-Richter C, Baltensperger R, Gabriel JP (2004) Phylogenetic constraints and adaptation explain food-web structure. Nature 427:835–839

    Article  PubMed  CAS  Google Scholar 

  • Chen HW, Liu WC, Davis AJ, Jordán F, Hwang MJ, Shao KT (2008) Network position of hosts in food webs and their parasite diversity. Oikos 117:1847–1855

    Article  Google Scholar 

  • Clayton DH, Bush SE, Johnson KP (2004) Ecology of congruence: past meets present. Syst Biol 53:165–173

    Article  PubMed  Google Scholar 

  • Cohen JE, Jonsson T, Müller CB, Godfray HCJ, Savage VM (2005) Body sizes of hosts and parasitoids in individual feeding relationships. Proc Natl Acad Sci U S A 102:684–689

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dormann CF, Gruber B, Frund (2008) The bipartite package, version 0.5. R Project for Statistical Computing, Vienna, Austria

  • Fletcher RJ, Revell A, Reichert BE, Kitchens WM, Dixon JD, Austin JD (2013) Network modularity reveals critical scales for connectivity in ecology and evolution. Nat Commun 4:1–7

    Google Scholar 

  • Gamble T, Colli GR, Rodrigues MT, Werneck FP, Simons AM (2011) Phylogeny and cryptic diversity in geckos (Phyllopezus; Phyllodactylidae; Gekkota) from South America’s open biomes. Mol Phylogenet Evol 62:943–953

    Article  PubMed  Google Scholar 

  • Genini J, Côrtes MC, Guimarães PR Jr, Galetti M (2011) Mistletoes play different roles in a modular host–parasite network. Biotropica 44:171–178

    Article  Google Scholar 

  • Giannini NP (2003) Canonical phylogenetic ordination. Syst Biol 52:684–695

    Article  PubMed  Google Scholar 

  • Giugliano LG, Collevatti RG, Colli GR (2007) Molecular dating and phylogenetic relationships among Teiidae (Squamata) inferred by molecular and morphological data. Mol Phylogenet Evol 45:168–179

    Article  PubMed  CAS  Google Scholar 

  • Gotelli NJ and Entsminger GL (2001) EcoSim: null models software for ecology. Version 7.44. Acquired Intelligence Inc. & Kesey Bear. Available from the Internet URL http://homepages.together.net/~gentsmin/ecosim.htm

  • Graham SP, Hassan HK, Burkett-Cadena ND, Guyer C, Unnasch TR (2009) Nestedness of ectoparasite-vertebrate host networks. Plos One 4:e7873

    Article  PubMed  PubMed Central  Google Scholar 

  • Guimarães PR Jr, Rico-Gray V, Dos Reis SF, Thompson JN (2006) Asymmetries in specialization in ant–plant mutualistic networks. Proc R Soc B 273:2041–2047

    Article  PubMed  PubMed Central  Google Scholar 

  • Ings TC, Montoya JM, Bascompte J, Blüthgen N, Brown L, Dormann CF, Edwards F, Figueroa D, Jacob U, Jones JI (2009) Review: ecological networks–beyond food webs. J Anim Ecol 78:253–269

    Article  PubMed  Google Scholar 

  • Kerr GD, Bull CM (2006) Interactions between climate, host refuge use, and tick population dynamics. Parasitol Res 99:214–222

    Article  PubMed  Google Scholar 

  • Krasnov BR, Fortuna MA, Mouillot D, Khokhlova IS, Shenbrot GI, Poulin R (2012) Phylogenetic signal in module composition and species connectivity in compartmentalized host-parasite networks. Am Nat 179:501–511

    Article  PubMed  Google Scholar 

  • Krause AE, Frank KA, Mason DM, Ulanowicz RE, Taylor WW (2003) Compartments revealed in food-web structure. Nature 426:282–285

    Article  PubMed  CAS  Google Scholar 

  • Lafferty KD, Dobson AP, Kuris AM (2006) Parasites dominate food web links. P Natl Acad Sci-Biol 103:11211–11216

    Article  CAS  Google Scholar 

  • Leu ST, Kappeler PM, Bull CM (2010) Refuge sharing network predicts ectoparasite load in a lizard. Behav Ecol Sociobiol 64:1495–1503

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewinsohn TM, Prado PI, Jordano P, Bascompte J, Olesen JM (2006) Structure in plant–animal interaction assemblages. Oikos 113:174–184

    Article  Google Scholar 

  • Lima DP Jr, Giacomini HC, Takemoto RM, Agostinho AA, Bini LM (2012) Patterns of interactions of a large fish–parasite network in a tropical floodplain. J Anim Ecol 81:905–913

    Article  PubMed  Google Scholar 

  • Marcogliese DJ (2002) Food webs and the transmission of parasites to marine fish. Parasitology 124:83–99

    Article  Google Scholar 

  • Martin JE, Llorente GA, Roca V, Carretero MA, Montori A, Santos X, Romeu R (2005) Relationship between diet and helminths in Gallotia caesaris (Sauria: Lacertidae). Zoology 108:121–130

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin RL (1989) Search modes of birds and lizards—evidence for alternative movement patterns. Am Nat 133:654–670

    Article  Google Scholar 

  • Morand S (2000) Wormy world: comparative tests of theoretical hypotheses on parasite species richness. In: Poulin R, Morand S, Skorping A (eds) Evolutionary Biology of host-parasite relationships: theory meets reality. Elsevier, Amsterdam, pp 63–79

    Google Scholar 

  • Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phy Rev E 69:066133

    Article  CAS  Google Scholar 

  • Olesen JM, Jordano P (2002) Geographic patterns in plant-pollinator mutualistic networks. Ecology 83:2416–2424

    Google Scholar 

  • Pascual M, Dunne JA (2006) Ecological networks: linking structure to dynamics in food webs. Oxford University Press, USA

    Google Scholar 

  • Pedersen AB, Fenton A (2007) Emphasizing the ecology in parasite community ecology. Trends Ecol Evol 22:133–139

    Article  PubMed  Google Scholar 

  • Perry G (1999) The evolution of search modes: ecological versus phylogenetic perspectives. Am Nat 153:98–109

    Article  Google Scholar 

  • Pianka ER (1973) The structure of lizard communities. Annu Rev Ecol Syst 4:53–74

    Article  Google Scholar 

  • Pimm SL, Lawton JH (1980) Are food webs divided into compartments? J Anim Ecol 49:879–898

    Article  Google Scholar 

  • Pough FH, Janis CM, Heiser JB (2003) A vida dos vertebrados. Editora Ateneu, São Paulo

    Google Scholar 

  • Price PW (1980) Evolutionary biology of parasites. Princeton University Press, Princeton

    Google Scholar 

  • R (2012) A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria

  • Rezende EL, Albert EM, Fortuna MA, Bascompte J (2009) Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol Lett 12:779–788

    Article  PubMed  Google Scholar 

  • Sites JW Jr, Reeder TW, Wiens JJ (2011) Phylogenetic insights on evolutionary novelties in lizards and snakes: sex, birth, bodies, niches, and venom. Annu Rev Ecol Evol Syst 11:227–244

    Article  Google Scholar 

  • Teng J, McCann KS (2004) Dynamics of compartmented and reticulate food webs in relation to energetic flows. Am Nat 164:85–100

    Article  PubMed  Google Scholar 

  • Ter Braak CJF, Smilauer P (1998) CANOCO reference manual and user’s guide to Canoco for windows: software for canonical community ordination (version 4.5) Cajo JF ter Braak and Petr Smilauer. Centre for Biometry

  • Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–856

    Article  PubMed  Google Scholar 

  • Tylianakis JM, Tscharntke T, Lewis OT (2007) Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445:202–205

    Article  PubMed  CAS  Google Scholar 

  • Van Valen L (1973) A new evolutionary law. Evol Theor 1:1–30

    Google Scholar 

  • Vázquez DP, Aizen MA (2004) Asymmetric specialization: a pervasive feature of plant-pollinator interactions. Ecology 85:1251–1257

    Article  Google Scholar 

  • Vázquez DP, Poulin R, Krasnov BR, Shenbrot GI (2005) Species abundance and the distribution of specialization in host–parasite interaction networks. J Anim Ecol 74:946–955

    Article  Google Scholar 

  • Velloso AL, Sampaio EVSB, Giulietti AM, Barbosa MRV, Castro AAJF, Queiroz LP, Fernandes A, Oren DC, Cestaro LA, Carvalho AJE, Pareyn FGC, Silva FBR, Miranda EE, Keel S, and Gondim RS (2001) Ecorregiões: propostas para o bioma caatinga; resultados do seminário de planejamento ecorregional da caatinga. Page 76 in Seminário de Planejamento Ecorregional da Caatinga. TNC/APNE Recife, Aldeia-Pernambuco

  • Vicente JJ, Rodrigues HO, Gomes DC, Pinto RM (1993) Nematóides do Brasil. Parte III: Nematóides de Répteis. Rev Bras Zool 10:19–168

    Article  Google Scholar 

  • Vitt LJ (1991) An introduction to the ecology of Cerrado lizards. J Herpetol 25:79–90

    Article  Google Scholar 

  • Vitt LJ (1995) The ecology of tropical lizards in the Caatinga of Northeast Brazil. Occas pap Okla Mus nat hist 1:1–29

  • Vitt LJ, Carvalho CM (1995) Niche partitioning in a tropical wet season: lizards in the lavrado area of northern Brazil. Copeia 2:305–329

  • Wiens JJ, Hutter CR, Mulcahy DG, Noonan BP, Townsend TM, Sites JW Jr, Reeder TW (2012) Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biol Lett 1:1–4

    Google Scholar 

  • Winemiller KO (1990) Spatial and temporal variation in tropical fish trophic networks. Ecol Monogr 60:331–367

    Article  Google Scholar 

  • Woodward G, Ebenman B, Emmerson ME, Montoya JM, Olesen JM, Valido A, Warren PH (2005) Body size in ecological networks. Trends Ecol Evol 20:402–409

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico–FUNCAP postdoctoral fellowship to SVB and FSF, a research fellowship from–CNPq to AV and WOA, and a Universal CNPq fellowship to DOM. Instituto Brasileiro de Meio Ambiente e Recursos Naturais Renováveis–IBAMA provided the license to capture lizards. Dr. A. Leyva helped with the English translation and editing of the manuscript. DOM thanks the University of Texas and Eric Pianka for providing conditions to finalize this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Brito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, S.V., Corso, G., Almeida, A.M. et al. Phylogeny and micro-habitats utilized by lizards determine the composition of their endoparasites in the semiarid Caatinga of Northeast Brazil. Parasitol Res 113, 3963–3972 (2014). https://doi.org/10.1007/s00436-014-4061-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4061-z

Keywords

Navigation