Skip to main content

Advertisement

Log in

Comparative transcript expression analysis of miltefosine-sensitive and miltefosine-resistant Leishmania donovani

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Leishmania donovani is the causative agent of anthroponotic visceral leishmaniasis in the Indian subcontinent. Oral miltefosine therapy has recently replaced antimonials in endemic areas. However, the drug is at risk of emergence of resistance due to unrestricted use, and, already, there are indications towards decline in treatment efficacy. Hence, understanding the mechanism of miltefosine resistance in the parasite is crucial. We employed genomic microarray analysis to compare the gene expression patterns of miltefosine-resistant and miltefosine-sensitive L. donovani. Three hundred eleven genes, representing ∼3.9 % of the total Leishmania genome, belonging to various functional categories including metabolic pathways, transporters, and cellular components, were differentially expressed in miltefosine-resistant parasite. Results in the present study highlighted the probable mechanisms by which the parasite sustains miltefosine pressure including (1) compromised DNA replication/repair mechanism, (2) reduced protein synthesis and degradation, (3) altered energy utilization via increased lipid degradation, (4) increased ABC 1-mediated drug efflux, and (5) increased antioxidant defense mechanism via elevated trypanothione metabolism. The study provided the comprehensive insight into the underlying mechanism of miltefosine resistance in L. donovani that may be useful to design strategies to increase lifespan of this important oral antileishmanial drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe-Dohmae S, Ikeda Y, Matsuo M, Hayashi M, Okuhira K, Ueda K, Yokoyama S (2004) ABCA7 supports apolipoprotein-mediated release of cellular cholesterol and phospholipid to generate high density lipoprotein. J Biol Chem 279:604–611

    Article  CAS  PubMed  Google Scholar 

  • Brochu C, Haimeur A, Ouellette M (2004) The heat shock protein HSP70 and heat shock cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite Leishmania. Cell Stress Chaperones 9:294–303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brodin TN, Heath S, Sacks DL (1992) Genes selectively expressed in the infectious (metacyclic) stage of Leishmania major promastigotes encode a potential basic-zipper structural motif. Mol Biochem Parasitol 52:241–250

    Article  CAS  PubMed  Google Scholar 

  • Bryceson A (2001) A policy for leishmaniasis with respect to the prevention and control of drug resistance. Trop Med Int Health 6:928–934

    Article  CAS  PubMed  Google Scholar 

  • Castanys-Munoz E, Alder-Baerens N, Pomorski T, Gamarro F, Castanys S (2007) A novel ATP-binding cassette transporter from Leishmania is involved in transport of phosphatidylcholine analogues and resistance to alkyl-phospholipids. Mol Microbiol 64(5):1141–1153

    Article  CAS  PubMed  Google Scholar 

  • Castanys-Munoz E, Perez-Victoria JM, Gamarro F, Castanys S (2008) Characterization of an ABCG-like transporter from the protozoan parasite Leishmania with a role in drug resistance and transbilayer lipid movement. Antimicrob Agents Chemother 52(10):3573–3579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clive S, Gardiner J, Leonard RC (1999) Miltefosine as a topical treatment for cutaneous metastases in breast carcinoma. Cancer Chemother Pharmacol 44:S29–S30

    Article  CAS  PubMed  Google Scholar 

  • Coulson RM, Connor V, Ajioka JW (1997) Using 3′ untranslated sequences to identify differentially expressed genes in Leishmania. Gene 196:159–164

    Article  CAS  PubMed  Google Scholar 

  • Croft SL, Seifert K, Yardley V (2006) Current scenario of drug development for leishmaniasis. Indian J Med Res 123:399–410

    CAS  PubMed  Google Scholar 

  • Das M, Saudagar P, Sundar S, Dubey VK (2013) Miltefosine-unresponsive Leishmania donovani has a greater ability than miltefosine-responsive L. donovani to resist reactive oxygen species. FEBS J 280:4807–4815

    Article  CAS  PubMed  Google Scholar 

  • Denver DR, Swenson SL, Lynch M (2003) An evolutionary analysis of the helix-hairpin-helix superfamily of DNA repair glycosylases. Mol Biol Evol 20:1603–1611

    Article  CAS  PubMed  Google Scholar 

  • do Monte-Neto RL, Coelho AC, Raymond F, Legare D, Corbeil J, Melo MN, Frezard F, Ouellette M (2011) Gene expression profiling and molecular characterization of antimony resistance in Leishmania amazonensis. PLoS Negl Trop Dis 5:e1167

    Article  PubMed Central  PubMed  Google Scholar 

  • Fairlamb AH, Cerami A (1992) Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol 46:695–729

    Article  CAS  PubMed  Google Scholar 

  • Flinn HM, Smith DF (1992) Genomic organisation and expression of a differentially-regulated gene family from Leishmania major. Nucleic Acids Res 20:755–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flohe L, Hecht HJ, Steinert P (1999) Glutathione and trypanothione in parasitic hydroperoxide metabolism. Free Radic Biol Med 27:966–984

    Article  CAS  PubMed  Google Scholar 

  • Garcia V, Phelps SE, Gray S, Neale MJ (2011) Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479:241–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gentle I, Gabriel K, Beech P, Waller R, Lithgow T (2004) The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J Cell Biol 164:19–24

    Article  CAS  PubMed  Google Scholar 

  • Goyeneche-Patino DA, Valderrama L, Walker J, Saravia NG (2008) Antimony resistance and trypanothione in experimentally selected and clinical strains of Leishmania panamensis. Antimicrob Agents Chemother 52:4503–4506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jain R, Ghoshal A, Mandal C, Shaha C (2010) Leishmania cell surface prohibitin: role in host-parasite interaction. Cell Microbiol 12:432–452

    Article  CAS  PubMed  Google Scholar 

  • Knuepfer E, Stierhof YD, McKean PG, Smith DF (2001) Characterization of a differentially expressed protein that shows an unusual localization to intracellular membranes in Leishmania major. Biochem J 356:335–344

    Article  CAS  PubMed  Google Scholar 

  • Kulshrestha A, Singh R, Kumar D, Negi NS, Salotra P (2011) Antimony-resistant clinical isolates of Leishmania donovani are susceptible to paromomycin and sitamaquine. Antimicrob Agents Chemother 55:2916–2921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar D, Kulshrestha A, Singh R, Salotra P (2009) In vitro susceptibility of field isolates of Leishmania donovani to Miltefosine and amphotericin B: correlation with sodium antimony gluconate susceptibility and implications for treatment in areas of endemicity. Antimicrob Agents Chemother 53:835–838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Le Calvez-Kelm F, Oliver J, Damiola F, Forey N, Robinot N, Durand G, Voegele C, Vallée MP, Byrnes G, Registry BC, Hopper JL, Southey MC, Andrulis IL, John EM, Tavtigian SV, Lesueur F (2012) RAD51 and breast cancer susceptibility: no evidence for rare variant association in the Breast Cancer Family Registry study. PLoS One 7:e52374

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee KY, Fu H, Aladjem MI, Myung K (2013) ATAD5 regulates the lifespan of DNA replication factories by modulating PCNA level on the chromatin. J Cell Biol 200:31–44

    Article  CAS  PubMed  Google Scholar 

  • Legare D, Cayer S, Singh AK, Richard D, Papadopoulou B, Ouellette M (2001) ABC proteins of Leishmania. J Bioenerg Biomembr 33:469–474

    Article  CAS  PubMed  Google Scholar 

  • Leprohon P, Legare D, Raymond F, Madore E, Hardiman G, Corbeil J, Ouellette M (2009) Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Res 37:1387–1399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin YC, Hsu JY, Chiang SC, Lee ST (2005) Distinct overexpression of cytosolic and mitochondrial tryparedoxin peroxidases results in preferential detoxification of different oxidants in arsenite-resistant Leishmania amazonensis with and without DNA amplification. Mol Biochem Parasitol 142:66–75

    Article  CAS  PubMed  Google Scholar 

  • Lux H, Heise N, Klenner T, Hart D, Opperdoes FR (2000) Ether–lipid (alkyl-phospholipid) metabolism and the mechanism of action of ether–lipid analogues in Leishmania. Mol Biochem Parasitol 111:1–14

    Article  CAS  PubMed  Google Scholar 

  • Martin-Benito J, Boskovic J, Gomez-Puertas P, Carrascosa JL, Simons CT, Lewis SA, Bartolini F, Cowan NJ, Valpuesta JM (2002) Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBO J 21:6377–6386

    Article  CAS  PubMed  Google Scholar 

  • Martinez LO, Agerholm-Larsen B, Wang N, Chen W, Tall AR (2003) Phosphorylation of a pest sequence in ABCA1 promotes calpain degradation and is reversed by ApoA-I. J Biol Chem 278:37368–37374

    Article  CAS  PubMed  Google Scholar 

  • Miller MA, McGowan SE, Gantt KR, Champion M, Novick SL, Andersen KA, Bacchi CJ, Yarlett N, Britigan BE, Wilson ME (2000) Inducible resistance to oxidant stress in the protozoan Leishmania chagasi. J Biol Chem 275:33883–33889

    Article  CAS  PubMed  Google Scholar 

  • Mottram JC, Brooks DR, Coombs GH (1998) Roles of cysteine proteinases of trypanosomes and Leishmania in host-parasite interactions. Curr Opin Microbiol 1:455–460

    Article  CAS  PubMed  Google Scholar 

  • Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103

    Article  CAS  PubMed  Google Scholar 

  • Ouellette M, Drummelsmith J, Papadopoulou B (2004) Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resist Updat 7:257–266

    Article  CAS  PubMed  Google Scholar 

  • Oza SL, Ariyanayagam MR, Aitcheson N, Fairlamb AH (2003) Properties of trypanothione synthetase from Trypanosoma brucei. Mol Biochem Parasitol 131:25–33

    Article  CAS  PubMed  Google Scholar 

  • Pandey BD, Pandey K, Kaneko O, Yanagi T, Hirayama K (2009) Relapse of visceral leishmaniasis after miltefosine treatment in a Nepalese patient. Am J Trop Med Hyg 80:580–582

    PubMed  Google Scholar 

  • Paschen SA, Waizenegger T, Stan T, Preuss M, Cyrklaff M, Hell K, Rapaport D, Neupert W (2003) Evolutionary conservation of biogenesis of beta-barrel membrane proteins. Nature 426:862–866

    Article  CAS  PubMed  Google Scholar 

  • Perez-Victoria FJ, Sanchez-Canete MP, Castanys S, Gamarro F (2006) Phospholipid translocation and miltefosine potency require both L. donovani miltefosine transporter and the new protein LdRos3 in Leishmania parasites. J Biol Chem 281:23766–23775

    Article  CAS  PubMed  Google Scholar 

  • Rochette A, Raymond F, Ubeda JM, Smith M, Messier N, Boisvert S, Rigault P, Corbeil J, Ouellette M, Papadopoulou B (2008) Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics 9:255. doi:10.1186/1471-2164-9-255

    Article  PubMed Central  PubMed  Google Scholar 

  • Salotra P, Sreenivas G, Pogue GP, Lee N, Nakhasi HL, Ramesh V, Negi NS (2001) Development of a species-specific PCR assay for detection of Leishmania donovani in clinical samples from patients with kala-azar and post-kala-azar dermal leishmaniasis. J Clin Microbiol 39:849–854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • See RH, Caday-Malcolm RA, Singaraja RR, Zhou S, Silverston A, Huber MT, Moran J, James ER, Janoo R, Savill JM, Rigot V, Zhang LH, Wang M, Chimini G, Wellington CL, Tafuri SR, Hayden MR (2002) Protein kinase A site-specific phosphorylation regulates ATP-binding cassette A1 (ABCA1)-mediated phospholipid efflux. J Biol Chem 277:41835–41842

    Article  CAS  PubMed  Google Scholar 

  • Seifert K, Matu S, Javier Perez-Victoria F, Castanys S, Gamarro F, Croft SL (2003) Characterisation of Leishmania donovani promastigotes resistant to hexadecylphosphocholine (miltefosine). Int J Antimicrob Agents 22:380–387

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Chavan HD, Dey CS (2008) Proteomic analysis of miltefosine-resistant Leishmania reveals the possible involvement of eukaryotic initiation factor 4A (eIF4A). Int J Antimicrob Agents 31:584–586

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Kumar D, Duncan RC, Nakhasi HL, Salotra P (2010) Overexpression of histone H2A modulates drug susceptibility in Leishmania parasites. Int J Antimicrob Agents 36:50–57

    Article  CAS  PubMed  Google Scholar 

  • Sundar S, Murray HW (2005) Availability of miltefosine for the treatment of kala-azar in India. Bull World Health Organ 83:394–395

    PubMed Central  PubMed  Google Scholar 

  • Sundar S, Rosenkaimer F, Makharia MK, Goyal AK, Mandal AK, Voss A, Hilgard P, Murray HW (1998) Trial of oral miltefosine for visceral leishmaniasis. Lancet 352:1821–1823

    Article  CAS  PubMed  Google Scholar 

  • Sundar S, Kumar K, Chakravarty J, Agrawal D, Agrawal S, Chhabra A, Singh V (2006) Cure of antimony-unresponsive Indian post-kala-azar dermal leishmaniasis with oral miltefosine. Trans R Soc Trop Med Hyg 100:698–700

    Article  CAS  PubMed  Google Scholar 

  • Ubeda JM, Legare D, Raymond F, Ouameur AA, Boisvert S, Rigault P, Corbeil J, Tremblay MJ, Olivier M, Papadopoulou B, Ouellette M (2008) Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. Genome Biol 9:R115

    Article  PubMed Central  PubMed  Google Scholar 

  • Vasiliou V, Vasiliou K, Nebert DW (2009) Human ATP-binding cassette (ABC) transporter family. Hum Genomics 3(3):281–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vergnes B, Gourbal B, Girard I, Sundar S, Drummelsmith J, Ouellette M (2007) A proteomics screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death. Mol Cell Proteomics 6:88–101

    Article  CAS  PubMed  Google Scholar 

  • Verma NK, Dey CS (2004) Possible mechanism of miltefosine-mediated death of Leishmania donovani. Antimicrob Agents Chemother 48:3010–3015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Welburn SC, Murphy NB (1998) Prohibitin and RACK homologues are up-regulated in trypanosomes induced to undergo apoptosis and in naturally occurring terminally differentiated forms. Cell Death Differ 5:615–622

    Article  CAS  PubMed  Google Scholar 

  • World Health Organisation, Geneva, Switzerland. Countries of South-East Asia region plan to eliminate kala azar. TDR News Oct 2004

  • Wyllie S, Mandal G, Singh N, Sundar S, Fairlamb AH, Chatterjee M (2010) Elevated levels of tryparedoxin peroxidase in antimony unresponsive Leishmania donovani field isolates. Mol Biochem Parasitol 173:162–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamauchi Y, Hayashi M, Abe-Dohmae S, Yokoyama S (2003) Apolipoprotein A-I activates protein kinase C alpha signaling to phosphorylate and stabilize ATP binding cassette transporter A1 for the high density lipoprotein assembly. J Biol Chem 278:47890–47897

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Chu F, Chou PM, Gallati C, Dier U, Mirkin BL, Mousa SA, Rebbaa A (2009) Cathepsin L inhibition suppresses drug resistance in vitro and in vivo: a putative mechanism. Am J Physiol Cell Physiol 296:C65–C74

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr Marc Ouellette at the Research Centre in Infectious Diseases, Faculty of Medicine, Laval University, Quebec, Canada for kindly sharing the microarray design with us. AK and VS are grateful to Council for Scientific and Industrial Research and University Grants Commission, India, respectively, for providing research fellowship. This work was supported by Indian Council of Medical Research grant number 63/4/2007/-BMS.

Conflict of interest

The authors do not have commercial or other associations that might pose any competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Salotra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

S1.1

Primers used to amplify LdMT and LdRos3 full-length gene sequence (DOCX 11 kb)

S1.2

Primers used to sequence LdMT and LdRos3 from both sensitive and resistant cell lines (DOC 36 kb)

S2

Primers used for quantitative real-time RT-PCR expression analysis. This table contains the sequences of the primers used for quantitative real-time PCR expression analysis to validate DNA microarray studies (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulshrestha, A., Sharma, V., Singh, R. et al. Comparative transcript expression analysis of miltefosine-sensitive and miltefosine-resistant Leishmania donovani . Parasitol Res 113, 1171–1184 (2014). https://doi.org/10.1007/s00436-014-3755-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-3755-6

Keywords

Navigation