Skip to main content

Advertisement

Log in

Characterization of Trypanosoma cruzi infectivity, proliferation, and cytokine patterns in gut and pancreatic epithelial cells maintained in vitro

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Trypanosoma cruzi infects all nucleated cells in both humans and experimental animals. As a prelude to our studies of T. cruzi pathogenesis in the gastrointestinal system, we have initiated in vitro cultures of gut (Caco-2 and HT-29) and pancreatic (Panc-1) epithelial cells. We show that along with primary human fibroblasts, all three cell lines are susceptible to infection and support proliferation of T. cruzi. Infection with T. cruzi modified dramatically the cytokines elaborated by these cells. Substantially greater quantities of IL-5 and TGF-β1 were produced by fibroblasts and Caco-2 and Panc-1 cells, whereas secretion of IFN-γ and TNF-α was greatly reduced in all three cell types. Since these cells are not known to be the primary sources of IFN-γ, we examined IFN-γ mRNA expression in these cells. Both Caco-2 and Panc-1 cells were found to express IFN-γ mRNA, validating its secretion. These findings may provide insight into signaling pathways that mediate innate immunity to T. cruzi and pathogenesis of gastrointestinal and pancreatic alterations in Chagas disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Araújo-Jorge TC, Waghabi MC, Hasslocher-Moreno AM, Xavier SS, Higuchi Mde L, Keramidas M, Bailly S, Feige JJ (2002) Implication of transforming growth factor-β1 in Chagas disease myocardiopathy. J Infect Dis 186:1823–1828

    Article  PubMed  Google Scholar 

  • Araújo-Jorge TC, Waghabi MC, de Soeiro MN (2008) Pivotal role for TGF-β in infectious heart disease: the case of Trypanosoma cruzi infection and consequent chagasic myocardiopathy. Cytokine Growth Factor Rev 19:405–413

    Article  PubMed  Google Scholar 

  • Araújo-Jorge TC, Waghabi MC, Bailly S, Feige JJ (2012) The TGF-β pathway as an emerging target for Chagas disease therapy. Clin Pharmacol Ther 92(5):613–621

    Article  PubMed  Google Scholar 

  • Barnabe C, Tibayrenc M (2004) Trypanosoma cruzi: long-term sub-cultures in two different culture media do not confirm the existence of highly versatile multilocus genotypes. Int J Parasitol 34:779–784

    Article  PubMed  CAS  Google Scholar 

  • Bern C, Montgomery SP (2009) An estimate of the burden of Chagas disease in the United States. Clin Infect Dis 49(5):e52–e54

    Article  PubMed  Google Scholar 

  • Burleigh BA, Andrews NW (1995) The mechanisms of Trypanosoma cruzi invasion of mammalian cells. Annu Rev Microbiol 49:175–200

    Article  PubMed  CAS  Google Scholar 

  • Chen A, Davis BH, Sitrin MD, Brasitus TA, Bissonnette M (2002) Transforming growth factor-β1 signaling contributes to Caco-2 cell growth inhibition induced by 1,25(OH)2D3. Am J Physiol Gastrointest Liver Physiol 283:G864–G874

    PubMed  CAS  Google Scholar 

  • Corbett CEP, Scremin LHG, Lombardi RA, Gama-Rodrigues JJ, Okumura M (2002) Pancreatic lesions in acute experimental Chagas’ disease. Rev Hosp Clin Fac Med S Paulo 57:63–66

    Article  PubMed  Google Scholar 

  • Davis CD, Kuhn RE (1990) Selective binding of Trypanosoma cruzi to host cell membrane polypeptides. Infect Immun 58(1):1–6

    PubMed  CAS  Google Scholar 

  • Epting CL, Coates BM, Engman DM (2010) Molecular mechanisms of host cell invasion by Trypanosoma cruzi. Exp Parasitol 126(3):283–291

    Article  PubMed  CAS  Google Scholar 

  • Guarner J, Bartlett J, Zaki SR, Colley DG, Grijalva MJ, Powell MR (2001) Mouse model for Chagas disease: immunochemical distribution of different stages of Trypanosoma cruzi in tissues throughout infection. Am J Trop Med Hyg 65:152–158

    PubMed  CAS  Google Scholar 

  • Gürtler RE, Segura EL, Cohen JE (2003) Congenital transmission of Trypanosoma cruzi infection in Argentina. Emerg Infect Dis 9:29–32

    Article  PubMed  Google Scholar 

  • Hotez PJ, Dumonteil E, Woc-Colburn L, Serpa JA, Bezek S, Edwards MS, Hallmark CJ, Musselwhite LW, Flink BJ, Bottazzi ME (2012) Chagas disease: “The new HIV/AIDS of the Americas”. PloS Negl Trop Dis 6:e1498

    Article  PubMed  Google Scholar 

  • Kirchhoff LV (1993) American trypanosomiasis (Chagas’ disease)—a tropical disease now in the United States. N Engl J Med 329:639–644

    Article  PubMed  CAS  Google Scholar 

  • Lenzi HL, Oliveira DN, Lima MT, Gattass CR (1996) Trypanosoma cruzi: paninfectivity of CL strain during murine acute infection. Exp Parasitol 84:16–27

    Article  PubMed  CAS  Google Scholar 

  • Long RG, Albuquerque RH, Prata A, Barnes AJ, Adrian TE, Christofides ND, Bloom SR (1980) Response of plasma pancreatic and gastrointestinal hormones and growth hormone to oral and intravenous glucose and insulin hypoglycaemia in Chagas’ disease. Gut 21:772–777

    Article  PubMed  CAS  Google Scholar 

  • Machado FS, Jelicks LA, Kirchhoff LV (2012) Chagas heart disease: report on recent developments. Cardiol Rev 20(2):53–65

    PubMed  Google Scholar 

  • Ming M, Chuenkova M, Ortega-Barria E, Pereira ME (1993) Mediation of Trypanosoma cruzi invasion by sialic acid on the host cell and trans-sialidase on the trypanosome. Mol Biochem Parasitol 59(2):243–252

    Article  PubMed  CAS  Google Scholar 

  • Ming M, Ewen ME, Pereira MEA (1995) Trypanosome invasion of mammalian cells requires activation of the TGFβ signaling pathway. Cell 82:287–296

    Article  PubMed  CAS  Google Scholar 

  • MMWR (2006) Chagas disease after organ transplantation—Los Angeles, California, 2006. Centers for Disease Control and Prevention. MMWR Morb Mortal Wkly Rep 55:798–800

    Google Scholar 

  • MMWR (2007) Blood donor screening for Chagas disease—United States, 2006–2007. Centers for Disease Control and Prevention. MMWR Morb Mortal Wkly Rep 56:141–143

    Google Scholar 

  • MMWR (2012) Congenital transmission of Chagas disease—Virginia, 2010. Centers for Disease Control and Prevention. MMWR Morb Mortal Wkly Rep 61:477–479

    Google Scholar 

  • Munk RB, Sugiyama K, Ghosh P, Sasaki CY, Rezanka L, Banerjee K, Takahashi H, Sen R, Longo DL (2011) Antigen-independent IFN-γ production by human näive CD4+ T cells activated by IL-12 plus IL-18. PLoS One 6:e18553

    Article  PubMed  CAS  Google Scholar 

  • Nagajyothi F, Kuliawat R, Kusminski CM, Machado FS, Desruisseaux MS, Zhao D, Schwartz GJ, Huang H, Albanese C, Lisanti MP, Singh R, Li F, Weiss LM, Factor SM, Pessin JE, Scherer PE, Tanowitz HB (2013) Alterations in glucose homeostasis in a murine model of Chagas disease. Am J Pathol 182(3):886–894

    Article  PubMed  CAS  Google Scholar 

  • Nagajyothi F, Weiss LM, Silver DL, Desruisseaux MS, Scherer PE, Herz J, Tanowitz HB (2011) Trypanosoma cruzi utilizes the host low density lipoprotein receptor in invasion. PLoS Negl Trop Dis 5(2):e953

    Article  PubMed  CAS  Google Scholar 

  • Nollevaux G, Devillé C, El Moualij B, Zorzi W, Deloyer P, Schneider YJ, Peulen O, Dandrifosse G (2006) Development of a serum-free co-culture of human intestinal epithelium cell-lines (Caco-2/HT29-5M21). BMC Cell Biol 7:20

    Article  PubMed  Google Scholar 

  • Oliveira LC, Juliano Y, Novo NF, Neves MM (1993) Blood glucose and insulin response to intravenous glucose by patients with chronic Chagas’ disease and alcoholism. Brazil J Med Biol Res 26:1187–1190

    CAS  Google Scholar 

  • Oliveira RB, Troncon LEA, Dantas BO, Meneghelli UG (1998) Gastrointestinal manifestations of Chagas’ disease. Am J Gastroenterol 93:884–889

    PubMed  Google Scholar 

  • Rady PL, Cadet P, Bui TK, Tyring SK, Baron S, Stanton GJ, Hughes TK (1995) Production of interferon gamma messenger RNA by cells of non-immune origin. Cytokine 7:793–798

    Article  PubMed  CAS  Google Scholar 

  • Rouabhia M, Ross G, Pagé N, Chakir J (2002) Interleukin-18 and gamma interferon production by oral epithelial cells in response to exposure to Candida albicans or lipopolysaccharide stimulation. Infect Immun 70:7073–7080

    Article  PubMed  CAS  Google Scholar 

  • Saldanha JC, dos Santos V, dos Reis MA, da Cunha DF, Antunes Teixeira VP (2001) Morphologic and morphometric evaluation of pancreatic islets in chronic Chagas’ disease. Rev Hosp Clin Fac Med S Paulo 56:131–138

    PubMed  CAS  Google Scholar 

  • Schmunis GA, Yadon ZE (2010) Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop 115:14–21

    Article  PubMed  Google Scholar 

  • Sharma M, Sharma S, Roy S, Varma S, Bose M (2007) Pulmonary epithelial cells are a source of interferon-gamma in response to Mycobacterium tuberculosis infection. Immunol Cell Biol 85:229–237

    PubMed  CAS  Google Scholar 

  • Shikanai-Yasuda MA, Carvalho NB (2012) Oral transmission of Chagas disease. Clin Infect Dis 54(6):845–852

    Article  PubMed  Google Scholar 

  • Tanowitz HB, Brosnan C, Guastamacchio D (1982) Infection of organotypic cultures of spinal cord and dorsal root ganglia with Trypanosoma cruzi. Am J Trop Med Hyg 6:1090–1097

    Google Scholar 

  • Tanowitz HB, Kirchhoff LV, Simon D, Morris SA, Weiss LM, Wittner M (1992) Chagas’ disease. Clin Microbiol Rev 5:400–419

    PubMed  CAS  Google Scholar 

  • Tanowitz HB, Weiss LM, Montgomery SP (2011) Chagas disease has now gone global. PloS Negl Trop Dis 5:e1136

    Article  PubMed  Google Scholar 

  • Vachon PH, Beaulieu JF (1992) Transient mosaic patterns of morphological and functional differentiation in the Caco-2 cell line. Gastroenterology 103:414–423

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Basic Research Support grant 57872 from the State University of New York. FSM was supported by CNPq and FAPEMIG, and HBT was supported by NIH grant AI-076248. We gratefully acknowledge Andrei Gourov, Ph.D.; Rodney Romain; and Justin Ulrich-Lewis for their technical assistance.

Conflict of interest

The authors have no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laura A. Martello or M. A. Haseeb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martello, L.A., Wadgaonkar, R., Gupta, R. et al. Characterization of Trypanosoma cruzi infectivity, proliferation, and cytokine patterns in gut and pancreatic epithelial cells maintained in vitro. Parasitol Res 112, 4177–4183 (2013). https://doi.org/10.1007/s00436-013-3609-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3609-7

Keywords

Navigation