Skip to main content
Log in

Intra-phylum and inter-phyla associations among gastrointestinal parasites in two wild mammal species

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

A growing body of literature reveals that the interactions among the parasite community may be strong and significant for parasite dynamics. There may be inter-specific antagonistic interactions as a result of competition and cross-effective immune response, or synergistic interactions where infection by one parasite is facilitated by another one, either by an impoverishment of the host’s defenses, parasite-induced selective immunosuppression, or trade-offs within the immune system. The nature of these interactions may depend on how related are the parasite species involved. Here we explored the presence of associations among gastrointestinal parasites (coccidia and helminths) in natural populations of two wild mammal species, the capybara (Hydrochoerus hydrochaeris) and the guanaco (Lama guanicoe). The associations explored were between the oocyst outputs of a selected Eimeria species and the other coccidia of that parasite community, and between Eimeria spp. and the predominant nematodes. The statistical analysis included adjustment for potential confounders or effect modifiers. In guanacos, the prevailing interactions were synergistic among the coccidia and between coccidia and nematodes (Nematodirus spp.). However, in capybaras, the interaction between nematodes (Viannaiidae) and Eimeria spp. depended on environmental and host factors. The relationship was positive in some circumstances (depending on season, year, sex, or animal size), but it appeared to become antagonistic under different scenarios. These antagonist interactions did not follow a particular seasonal pattern (they occurred in autumn, spring, and summer), but they were predominantly found in females (when they depended on sex) or in 2010 and 2011 (when they depended on the sampling year). These results suggest that the relationship between coccidia and nematodes in capybaras may be context dependent. We propose that the context-dependent immune investment documented in capybaras may be the cause of these varying interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas A, Murphy K, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383:787–793

    Article  PubMed  CAS  Google Scholar 

  • Akaike H (1994) A new look at the statistical model identification. IEEE Trans Autom Control AC 19:716–723

    Article  Google Scholar 

  • Albuquerque G, Berto B, Catenacci L, Nogueira S, Nogueira S, Lopes C (2008) Eimerid coccidia recovered from capybaras (Hydrochoerus hydrochaeris) in southern Bahia, Brazil. Pesqui Vet Bras 28:323–328

    Article  Google Scholar 

  • Beldomenico PM, Uhart M, Bono MF, Marull C, Baldi R, Peralta JL (2003) Internal parasites of free-ranging guanacos from Patagonia. Vet Parasitol 118:71–77

    Article  PubMed  CAS  Google Scholar 

  • Beldomenico PM, Telfer S, Gebert S, Lukomski L, Bennett M, Begon M (2008) The dynamics of health in field vole populations: a haematological perspective. J Anim Ecol 77:984–997

    Article  PubMed  Google Scholar 

  • Beldomenico P, Begon M (2010) Disease spread, susceptibility and infection intensity: vicious circles? Trends Ecol Evol 25:21–27

    Article  PubMed  Google Scholar 

  • Bertolino S, Hofmannova L, Girardello M, Modry D (2010) Richness, origin and structure of an Eimeria community in a population of Eastern cottontail (Sylvilagus floridanus) introduced into Italy. Parasitology 137:1179–1186

    Article  PubMed  CAS  Google Scholar 

  • Choi KD, Lillehoj HS, Zarlenga DS (1999) Changes in local IFN-gamma and TGF-beta4 mRNA expression and intraepithelial lymphocytes following Eimeria acervulina infection. Vet Immunol Immunopathol 71:263–275

    Article  PubMed  CAS  Google Scholar 

  • Cox FE (2001) Concomitant infections, parasites and immune responses. Parasitology 122(Suppl):S23–S38

    Article  PubMed  Google Scholar 

  • Diaz A, Allen JE (2007) Mapping immune response profiles: the emerging scenario from helminth immunology. Eur J Immunol 37:3319–3326

    Article  PubMed  CAS  Google Scholar 

  • Eberhardt AT, Costa SA, Marini R, Racca A, Baldi CJ, Robles R, Moreno PA, Beldomenico PM (2013) Parasitism and physiological trade-offs in stressed capybaras. PLoS ONE 8:e70382. doi:10.1371/journal.pone.0070382

  • Ezenwa VO, Jolles AE (2011) From host immunity to pathogen invasion: the effects of helminth coinfection on the dynamics of microparasites. Integr Comp Biol 51:540–551

    Article  PubMed  Google Scholar 

  • Graham AL (2008) Ecological rules governing helminth–microparasite coinfection. Proc Natl Acad Sci 105:566–570

    Article  PubMed  CAS  Google Scholar 

  • Hellard E, Pontier D, Sauvage F, Poulet H, Fouchet D (2012) True versus false parasite interactions: a robust method to take risk factors into account and its application to feline viruses. PLoS One 7:e29618

    Article  PubMed  CAS  Google Scholar 

  • Jolles AE, Ezenwa VO, Etienne RS, Turner WC, Olff H (2008) Interactions between macroparasites and microparasites drive infection patterns in free-ranging African buffalo. Ecology 89:2239–2250

    Article  PubMed  Google Scholar 

  • Knowles SCL, Fenton A, Petchey OL, Jones TR, Barber R, Pedersen AB (2013) Stability of within-host–parasite communities in a wild mammal system. Proc R Soc B 280:20130598

    Article  PubMed  Google Scholar 

  • Lafferty KD (2010) Microbiology. Interacting parasites. Science 330:187–188

    Article  PubMed  CAS  Google Scholar 

  • Laurent F, Mancassola R, Lacroix S, Menezes R, Naciri M (2001) Analysis of chicken mucosal immune response to Eimeria tenella and Eimeria maxima infection by quantitative reverse transcription-PCR. Infect Immun 69:2527–2534

    Article  PubMed  CAS  Google Scholar 

  • McDonald V, Shirley MW (2009) Past and future: vaccination against Eimeria. Parasitology 136:1477–1489

    Article  PubMed  CAS  Google Scholar 

  • Mideo N (2009) Parasite adaptations to within-host competition. Trends Parasitol 25:261–268

    Article  PubMed  Google Scholar 

  • Nfon C, Berhane Y, Pasick J, Embury-Hyatt C, Kobinger G, Kobasa D, Babiuk S (2012) Prior infection of chickens with H1N1 or H1N2 avian influenza elicits partial heterologous protection against highly pathogenic H5N1. PLoS One 7:e51933

    Article  PubMed  CAS  Google Scholar 

  • Pakandl M (2009) Coccidia of rabbit: a review. Folia Parasitol (Praha) 56:153–166

    Google Scholar 

  • Pathak A, Pelensky C, Boag B, Cattadori I (2012) Immuno-epidemiology of chronic bacterial and helminth co-infections: observations from the field and evidence from the laboratory. Int J Parasitol 42:647–655

    Article  PubMed  Google Scholar 

  • Pedersen AB, Antonovics J (2013) Antihelmintic treatment alters the parasite community in a wild mouse host. Biol Lett 9:20130205

    Article  PubMed  Google Scholar 

  • Rose ME (1975) Infections with Eimeria maxima and Eimeria acervulina in the fowl: effect of previous infection with the heterologous organism on oocyst production. Parasitology 70:263–271

    Article  PubMed  CAS  Google Scholar 

  • Salas V, Herrera EA (2004) Intestinal helminths of capybaras, Hydrochoerus hydrochaeris, from Venezuela. Mem Inst Oswaldo Cruz 99:563–566

    Article  PubMed  Google Scholar 

  • Schrey CF, Abbott TA, Stewart VA, Marquardt WC (1991) Coccidia of the llama, Lama glama, in Colorado and Wyoming. Vet Parasitol 40:21–28

    Article  PubMed  CAS  Google Scholar 

  • Shehu K, Nowell F (1998) Cross-reactions between Eimeria falciformis and Eimeria pragensis in mice induced by trickle infections. Parasitology 117(Pt 5):457–465

    Article  PubMed  Google Scholar 

  • Telfer S, Lambin X, Birtles R, Beldomenico P, Burthe S, Paterson S, Begon M (2010) Species interactions in a parasite network drive infection risk in a wildlife population. Science 330:243–246

    Article  PubMed  CAS  Google Scholar 

  • Ulrich Y, Schmid-Hempel P (2012) Host modulation of parasite competition in multiple infections. Proc R Soc B 279:2982–2989

    Article  PubMed  Google Scholar 

  • Urban JF Jr, Madden KB, Svetic A, Cheever A, Trotta PP, Gause WC, Katona IM, Finkelman FD (1992) The importance of Th2 cytokines in protective immunity to nematodes. Immunol Rev 127:205–220

    Article  PubMed  CAS  Google Scholar 

  • Yazdanbakhsh M, Kremsner P, van Ree R (2002) Allergy, parasites, and the hygiene hypothesis. Science 296:490–494

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Agencia Nacional de Promoción Científica y Tecnológica (PICT2010-2202), the Secretaría de Estado de Ciencia, Tecnología e Innovación de la Provincia de Santa Fe (SECTEI-21-08-12), and the Universidad Nacional del Litoral (CAI+D 002-009). PGM and ATE are fellows of CONICET.

We thank Pablo Carmanchahi, Carolina Marull, Virginia Rago, Sebastian Cirignoli, Daniel Zurvera, Valeria Debárbora, Natalia Schroeder, Paula Taraborelli, Pablo Gregorio, Pedro Insaurralde, the Payun Matru Cooperative, the Instituto Argentino de Investigación de las Zonas Áridas (IADIZA), and The Conservation Land Trust staff for their essential support during fieldwork.

The laboratory and field work was conducted in full compliance with the Bioethical Committee of the School of Veterinary Medicine of Universidad Nacional del Litoral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Beldomenico.

Additional information

P. G. Moreno and M. A. T. Eberhardt contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, P.G., Eberhardt, M.A.T., Lamattina, D. et al. Intra-phylum and inter-phyla associations among gastrointestinal parasites in two wild mammal species. Parasitol Res 112, 3295–3304 (2013). https://doi.org/10.1007/s00436-013-3509-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3509-x

Keywords

Navigation