Skip to main content
Log in

Fecundity of various species of strongylids (Nematoda: Strongylidae)—parasites of domestic horses

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The aims of the study were to determine fecundity of several strongylid species parasitizing domestic horses and analyze possible relations between numbers of eggs in female uteri and size of both the eggs and the nematodes as well as the influence of fecundity on proportion of species in the strongylid community. Twenty-five specimens from each of 15 strongylid species (Strongylus vulgaris, Strongylus edentatus, Triodontophorus serratus, Triodontophorus brevicauda, Triodontophorus tenuicollis, Cyathostomum catinatum, Coronocyclus coronatus, Cylicocyclus nassatus, Cylicocyclus insigne, Cylicocyclus leptostomus, Cylicostephanus calicatus, Cylicostephanus goldi, Cylicostephanus longibursatus, Cylicostephanus minutus, and Poteriostomum imparidentatum) collected after necropsy were studied. The reproductive system was extracted from the female body; all eggs were removed, counted, and measured under a light microscope. Significant differences in number of eggs in female uteri of various strongylid species were observed (Kruskal–Wallis test, p < 0.001); the least numbers of eggs were registered in C. longibursatus (average = 49) and C. leptostomus (63) and the largest number in S. edentatus (5,918). Significant correlation between nematode body size and number of eggs was observed (p < 0.001). Correlation between size of eggs and body size was insignificant (Spearman R = 0.11, p = 0.70). Negative correlation was observed between number of eggs in female uteri and proportion of these species in strongylid community (Spearman R = −0.78, p < 0.001). Multiple linear regression of species proportion in the community on three predictors (number of eggs, body size, and egg size) was not significant (p > 0.05). However, the question on influence of fecundity on proportion of species in strongylid community needs further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson RM, May RM (1978) Regulation and stability of host-parasite population interaction. I. Regulatory processes. J Anim Ecol 47:219–247

    Article  Google Scholar 

  • Armour J (1980) The epidemiology of helminth disease in farm animals. Vet Parasitol 6:7–46

    Article  Google Scholar 

  • Boulenger CL (1920) On some nematode parasites of the zebra. Parasitol 12:98–107

    Article  Google Scholar 

  • Bowman DD, Lynn RC (1995) Parasitology for veterinarians, 6th edn. Saunders, Philadelphia

    Google Scholar 

  • Bucknell DG, Gasser RB, Beveridge I (1995) The prevalence and epidemiology of gastrointestinal parasites of horses in Victoria, Australia. Int J Parasitol 25:711–724

    Article  PubMed  CAS  Google Scholar 

  • Chapman MR, French DD, Klei TR (2003) Prevalence of strongyle nematodes in naturally infected ponies of different ages and during different seasons of the year in Louisiana. J Parasitol 89:309–314

    Article  PubMed  Google Scholar 

  • Collobert-Laugier C, Hoste H, Sevin C, Dorchies P (2002) Prevalence, abundance and site distribution of equine small strongyles in Normandy, France. Vet Parasitol 110:77–83

    Article  PubMed  CAS  Google Scholar 

  • Corning S (2009) Equine cyathostomins: a review of biology, clinical significance and therapy. Parasite Vectors 2(Suppl 2):1–6

    Article  Google Scholar 

  • Crofton HD (1971) Quantitative approach to parasitism. Parasitol 62:179–193

    Article  Google Scholar 

  • Denwood MJ, Love S, Innocent GT, Matthews L, McKendrick IJ, Hillary N, Smith A, Reid SW (2012) Quantifying the sources of variability in equine faecal egg counts: implications for improving the utility of the method. Vet Parasitol 188:120–126

    Google Scholar 

  • Döpfer D, Kerssens CM, Meijer YG, Boersema JH, Eysker M (2004) Shedding consistency of strongyle-type eggs in Dutch boarding horses. Vet Parasitol 124:249–258

    Article  PubMed  Google Scholar 

  • Duncan JL (1974) Field studies on the epidemiology of mixed strongyle infection in the horse. Vet Rec 94:337–345

    Article  PubMed  CAS  Google Scholar 

  • Duncan JL, Pirie HM (1972) The life cycle of Strongylus vulgaris in the horse. Res Vet Sci 13:374–379

    PubMed  CAS  Google Scholar 

  • Dvojnos GM, Kharchenko VA (1994) Strongilidy dikikh i domashnikh loshadej. [Strongylida of wild and domestic horses] Naukova Dumka, Kiev (in Russian)

  • Gawor JJ (1995) The prevalence and abundance of internal parasites in working horses autopsied in Poland. Vet Parasitol 58:99–108

    Article  PubMed  CAS  Google Scholar 

  • Gomez HH, Georgi JR (1991) Equine helminth infections: control by selective chemotherapy. Equine Vet J 23:198–200

    Article  PubMed  CAS  Google Scholar 

  • Hansen J and Perry B (1994) The epidemiology, diagnosis and control of helminthes parasites of ruminants. A hand book. ILRAD, Nairobi, pp 158–168

  • Herd RP (1992) Performing equine faecal egg counts. Vet Med 87:240–244

    Google Scholar 

  • Hodgkinson JE, Freeman KL, Lichtenfels JR, Palfreman S, Love S, Matthews JB (2005) Identification of strongyle eggs from anthelmintic-treated horses using a PCR-ELISA based on intergenic DNA sequences. Parasitol Res 95:287–292

    Article  PubMed  CAS  Google Scholar 

  • Ionita M, Howe DK, Lyons ET, Tolliver SC, Kaplan RM, Mitrea IL, Yeargan M (2010) Use of a reverse line blot assay to survey small strongyle (Strongylida: Cyathostominae) populations in horses before and after treatment with ivermectin. Vet Parasitol 168:332–337

    Article  PubMed  CAS  Google Scholar 

  • Kaplan RM (2004) Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol 20:477–481

    Article  PubMed  CAS  Google Scholar 

  • Kennedy CR (1975) Ecological animal parasitology. Blackwell, Oxford

    Google Scholar 

  • Kuzmina TA, Kharchenko VA, Starovir AI, Dvojnos GM (2005) Analysis of the strongylid nematodes (Nematoda: Strongylidae) community after deworming of brood horses in Ukraine. Vet Parasitol 131:283–290

    Article  PubMed  CAS  Google Scholar 

  • Kuzmina TA, Kharchenko VA, Zvegintsova NS (2007) Comparative study of the intestinal strongylid communities of equidae in the Askania–Nova biosphere reserve. Ukraine Helminthol 44:62–69

    Article  Google Scholar 

  • Lichtenfels JR (1975) Helminths of domestic equids. Proc Helm Soc Wash 42:1–92

    Google Scholar 

  • Lichtenfels JR, Kharchenko VA, Dvojnos GM (2008) Illustrated identification keys to strongylid parasites (Strongylidae: Nematoda) ofhorses, zebras and asses (Equidae). Vet Parasitol 156:4–161

    Article  PubMed  Google Scholar 

  • Looss A (1900) Notizen zur Helminthologie Egipten 3. Die Sclerostomen der Pferde und Esel in Egypten. Zbl Bakteriol 27 (S150–160): 184–192

    Google Scholar 

  • Lyons E, Tolliver S, Drudge J, Stamper S, Swerczek T, Granstrom D (1996) A study (1977–1992) of population dynamics of endoparasites featuring benzimidazole-resistant small strongyles (population S) in Shetland ponies. Vet Parasitol 66:75–86

    Article  PubMed  CAS  Google Scholar 

  • Lyons ET, Tolliver SC, Collins SS, Drudge JH (2001) Transmission of endoparasites in horse foals born on the same pasture on a farm in central Kentucky (1996–1999). Vet Parasitol 97:113–121

    Article  PubMed  CAS  Google Scholar 

  • Matthee S, McGeoch MA (2004) Helminths in horses: use of selective treatment for the control of strongyles. J S Afr Vet Assoc 75:129–136

    PubMed  CAS  Google Scholar 

  • Medica DL, Sukhdeo VK (2001) Estimating transmission potential in gastrointestinal nematodes (order: Strongylida). J Parasitol 87:442–445

    PubMed  CAS  Google Scholar 

  • Mfitilodze MW, Hutchinson GW (1990) Prevalence and abundance of equine strongyles (Nematoda: Strongyloidea) in tropical Australia. J Parasitol 76:487–494

    Article  PubMed  CAS  Google Scholar 

  • Michel JF (1976) The epidemiology and control of some nematode infections in grazing animals. Adv Parasitol 14:355–397

    Article  PubMed  CAS  Google Scholar 

  • Morand S (1996) Life history traits in parasitic nematodes: a comparative approach for the search of invariants. Funct Ecol 10:210–218

    Article  Google Scholar 

  • Nielsen MK (2012) Sustainable equine parasite control: perspectives and research needs. Vet Parasitol 185:32–44

    Article  PubMed  CAS  Google Scholar 

  • Nielsen MK, Haaning N, Olsen SN (2006) Strongyle egg shedding consistency in horses on farms using selective therapy in Denmark. Vet Parasitol 135:333–335

    Article  PubMed  CAS  Google Scholar 

  • Nielsen MK, Baptiste KE, Tolliver SC, Collins SS, Lyons ET (2010) Analysis of multiyear studies in horses in Kentucky to ascertain whether counts of eggs and larvae per gram of feces are reliable indicators of numbers of strongyles and ascarids present. Vet Parasitol 174:77–84

    Article  PubMed  CAS  Google Scholar 

  • Ogbourne CP (1971) Variations in the fecundity of strongylid worms of the horse. Parasitol 63:289–298

    Article  CAS  Google Scholar 

  • Ogbourne CP (1975) Epidemiological studies on horses infected with nematodes of the family Trichonematidae (Witenberg, 1925). Int J Parasitol 5:667–672

    Article  PubMed  CAS  Google Scholar 

  • Ogbourne CP (1976) The prevalence, relative abundance and site distribution of nematodes of the subfamily Cyathostominae in horses killed in Britain. J Helminthol 50:203–214

    Article  PubMed  CAS  Google Scholar 

  • Ogbourne CP, Duncan JL (1985) Strongylus vulgaris in the horse: its biology and veterinary importance. Commonwealth Agricult Bureaux, London

    Google Scholar 

  • Osterman Lind E, Eysker M, Nilsson O, Uggla A, Hoglund J (2003) Expulsion of small strongyle nematodes (cyathostomin spp.) following deworming of horses on a stud farm in Sweden. Vet Parasitol 115:289–299

    Article  PubMed  CAS  Google Scholar 

  • Poynter D (1954) Seasonal fluctuation in the number of strongyle eggs passed by horses. Vet Rec 66:74–78

    Google Scholar 

  • Ractliffe LH, Lejambre LF (1971) Increase of rate of egg production with growth in some intestinal nematodes of sheep and horses. Int J Parasitol 1(2):53–156

    Article  Google Scholar 

  • Reinemeyer CR, Smith SA, Gabel AA, Herd RP (1984) The prevalence and intensity of internal parasites of horses in the USA. Vet Parasitol 15:75–83

    Article  PubMed  CAS  Google Scholar 

  • Round MC (1969) The prepatent period of some horse nematopdes determined by experimental infection. J Helminthol 43:185–192

    Article  PubMed  CAS  Google Scholar 

  • Silva AVM, Costa HMA, Santos HA, Carvalho RO (1999) Cyathostominae (Nematoda) parasites of Equus caballus in some Brazilian states. Vet Parasitol 86:15–21

    Article  PubMed  CAS  Google Scholar 

  • Skarbilovich TS (1948) Study on the onthogenesis of the horse nematode Delafondia vulgaris (Looss, 1900). Tr Gel’minthol Lab Akad Nauk SSSR 1:123–128 [in Russian]

    Google Scholar 

  • Skorping A, Read AF, Keymer AE (1991) Life history covariation in intestinal nematodes of mammals. Oikos 60:365–372

    Article  Google Scholar 

  • Soulsby EJL (1982) Helminths, arthropods and protozoa of domesticated animals, 7th edn. Lea & Febiger, Philadelphia

    Google Scholar 

  • Stear MJ, Bairden K, Duncan JL, Holmes PH, McKellar QA, Park M, Strain S, Murray M, Bishop SC, Gettinby G (1997) How hosts control worms. Nature 389:27

    Article  PubMed  CAS  Google Scholar 

  • Stoll NR (1930) On methods of counting nematode ova in sheep dung. Parasitol 22:116–136

    Article  Google Scholar 

  • Theiler G (1923) The Sclerostomids and other Nematodes parasitic in the intestinal tract of South African Equines: These Pretoria Gov Print and Stat Office

  • Traversa D, Iorio R, Klei TR, Kharchenko VA, Gawor J, Otranto D, Sparagano OA (2007) New method for simultaneous species-specific identification of equine strongyles (Nematoda, Strongylida) by reverse line blot hybridization. J Clin Microbiol 45:2937–2942

    Article  PubMed  CAS  Google Scholar 

  • Uhlinger CA (1993) Uses of fecal egg count data in equine practice. Comp Cont Ed Pract Vet 15:742–749

    Google Scholar 

  • Velichkin PA (1955) The time taken for the development of Delafondia, Alfortia and Strongylus in body of foals under experimental infection. Veterinaria 4:45 (in Russian)

  • von Samson-Himmelstjerna G (2012) Anthelmintic resistance in equine parasites—detection, potential clinical relevance and implications for control. Vet Parasitol 185:2–8

    Article  Google Scholar 

Download references

Acknowledgments

This research (paper no. 12-14-055) is published with the approval of the director of the Kentucky Agricultural Experiment Station. Appreciation is expressed to the Albert and Lorraine Clay Fellowship for partial financial support for one of the authors, Tetiana Kuzmina, to come as a visiting scientist from Ukraine to the University of Kentucky to study parasites of equids. The authors thank Dr. Iurii (Yuriy) Kuzmin from the Institute of Zoology NAS of Ukraine for his consultations and assistance in preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Kuzmina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzmina, T.A., Lyons, E.T., Tolliver, S.C. et al. Fecundity of various species of strongylids (Nematoda: Strongylidae)—parasites of domestic horses. Parasitol Res 111, 2265–2271 (2012). https://doi.org/10.1007/s00436-012-3077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-3077-5

Keywords

Navigation