Skip to main content

Advertisement

Log in

Anti-leishmanial and toxicity activities of some selected Iranian medicinal plants

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Leishmaniasis is caused by protozoan parasites belonging to the genus Leishmania. Cutaneous leishmaniasis is the most common form of leishmaniasis in Iran. As there is not any vaccine for leishmaniasis, treatment is important to prevent the spreading of parasites. There is, therefore, a need to develop newer drugs from different sources. The aim of this study was to assess anti-leishmanial activity of the ethanolic extracts of 17 different medicinal plants against Leishmania major promastigotes and macrophage cell line J774. The selection of the hereby studied 17 plants was based on the existing information on their local ethnobotanic history. Plants were dried, powdered, and macerated in a hydroalcoholic solution. Resulting extracts have been assessed for in vitro anti-leishmanial and brine shrimp toxicity activities. Four plants, Caesalpinia gilliesii, Satureia hortensis, Carum copticum heirm, and Thymus migricus, displayed high anti-leishmanial activity (IC50, 9.76 ± 1.27, 15.625 ± 3.76, 15.625 ± 5.46, and 31.25 ± 15.44 μM, respectively) and were toxic against the J774 macrophage cell line at higher concentrations than those needed to inhibit the parasite cell growth (IC50, 45.13 ± 3.17, 100.44 ± 17.48, 43.76 ± 0.78, and 39.67 ± 3.29 μM, respectively). Glucantime as positive control inhibited the growth of L. major promastigotes with IC50 = 254 μg/ml on promastigotes (1 × 106/100 μ/well) of a log phase culture, without affecting the growth of J774 macrophages. These data revealed that C. gilliesii, S. hortensis, C. copticum heirm, and T. migricus extracts contain active compounds, which could serve as alternative agents in the control of cutaneous leishmaniasis. The activity of these herbs against L. major promastigotes and macrophage cell line J774 was reported for the first time in our study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alizadeh A, Khoshkhui M, Javidnia K, Firuzi O, Tafazoli E, Khalighi A et al (2010) Effects of fertilizer on yield, essential oil composition, total phenolic content and antioxidant activity in Satureja hortensis L. (Lamiaceae) cultivated in Iran. J Med Plants Res 4:033–040

    CAS  Google Scholar 

  • Bafghi AF, Vahidi AR, Anvari MH, Barzegar K, Ghafourzadeh M (2011) The in vivo antileishmanial activity of alcoholic extract from Nigella sativa seeds. Afr J Microbiol Res 5(12):1504–1510

    Google Scholar 

  • Baruah DB, Dash RN, Chaudhari MR, Kadam SS (2006) Plasminogen activators: a comparison. Vascul Pharmacol 44(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Berman JD, Badaro R, Thakur CP, Wasunna KM, Behbehani K, Davidson R, Kuzoe F, Pang L et al (1998) Efficacy and safety of liposomal amphotericin B (AmBisome) for visceral leishmaniasis in endemic developing countries. Bull World Health Organ 76(1):25-32

    PubMed  CAS  Google Scholar 

  • Breitling R et al (2002) Non-pathogenic trypanosomatid protozoa as a platform for protein research and production. Protein Expr Purif 25(2):209–218

    Article  PubMed  CAS  Google Scholar 

  • Carvalho PB, Ferreira EI (2001) Leishmaniasis phytotherapy. Nature's leadership against an ancient disease. Fitoterapia 72(6):599–618. doi:S0367-326X(01)00301-X[pii]

    Article  PubMed  Google Scholar 

  • Chan-Bacab MJ, Peña-Rodríguez LM (2001) Plant natural products with leishmanicidal activity. Nat Prod Rep 18(6):674–688

    Article  PubMed  CAS  Google Scholar 

  • Corrêa DS et al (2011) Anti-leishmanial and anti-trypanosomal potential of polygodial isolated from stem barks of Drimys brasiliensis Miers (Winteraceae). Parasitol Res 109(1):231–236

    Article  PubMed  Google Scholar 

  • Cosentino S et al (1999) In–vitro antimicrobial activity and chemical composition of Sardinian thymus essential oils. Lett Appl Microbiol 29(2):130–135

    Article  PubMed  CAS  Google Scholar 

  • de Almeida Alves TM, Nagem TJ, De Carvalho LH, Krettli AU, Zani CL (1997) Antiplasmodial triterpene from Vernonia brasiliana. Planta Med 63:554–555

    Article  Google Scholar 

  • de Carvalho PB, Ferreira EI (2001) Leishmaniasis phytotherapy. Nature's leadership against an ancient disease. Fitoterapia 72(6):599–618

    Article  PubMed  Google Scholar 

  • Derbalah AS, Dewir YH, El-Sayed AENB (2011) Antifungal activity of some plant extracts against sugar beet damping-off caused by Sclerotium rolfsii. Annals of Microbiology: doi:10.1007/s13213-011-0342-2

  • Dube A, Singh N, Sundar S (2005) Refractoriness to the treatment of sodium stibogluconate in Indian kala-azar field isolates persist in in vitro and in vivo experimental models. Parasitol Res 96(4):216–223

    Article  PubMed  Google Scholar 

  • Farag R, Daw Z, Abo-Raya S (1989) Influence of some spice essential oils on Aspergillus parasiticus growth and production of aflatoxins in a synthetic medium. J Food Sci 54(1):74–76

    Article  CAS  Google Scholar 

  • Finney D (1949) The adjustment for a natural response rate in probit analysis. Ann Appl Biol 36(2):187–195

    Article  PubMed  CAS  Google Scholar 

  • Gautam R, Jachak SM (2009) Recent developments in anti–inflammatory natural products. Med Res Rev 29(5):767–820

    Article  PubMed  CAS  Google Scholar 

  • Helander IM et al (1998) Characterization of the action of selected essential oil components on gram-negative bacteria. J Agric Food Chem 46:3590–3595

    Article  CAS  Google Scholar 

  • Hepburn NC, Tidman MJ, Hunter JAA(1994) Aminosidine [paromomycin] versus sodium stibogluconate for the treatment of American cutaneous leishmaniasis. Trans R Soc Trop Med Hyg 88:700-703.

    Article  PubMed  CAS  Google Scholar 

  • Hu CQ, Chen K, Shi Q, Kilkuskie RE, Cheng YC, Lee KH (1994) Anti-AIDS agents, 10. Acacetin-7-O-d-galactopyranoside, an anti-HIV principle from Chrysanthemum morifolium and a structure–activity correlation with some related flavonoids. J Nat Prod 57(1):42–51

    Article  PubMed  CAS  Google Scholar 

  • Kayser O, Kiderlen AF (2001) In vitro leishmanicidal activity of naturally occurring chalcones. Phytother Res 15(2):148–152

    Article  PubMed  CAS  Google Scholar 

  • Kayser O, Kiderlen A, Croft S (2003) Natural products as antiparasitic drugs. Parasitol Res 90:55–62

    Article  Google Scholar 

  • Khajeh M, Yamini Y, Sefidkon F, Bahramifar N (2004) Comparison of essential oil composition of Carum copticum obtained by supercritical carbon dioxide extraction and hydrodistillation methods. Food Chem 86(4):587–591

    Article  CAS  Google Scholar 

  • Khalid SA, Farouk A, Geary TG, Jensen JB (1986) Potential antimalarial candidates from African plants: an in vitro approach using Plasmodium falciparum. J Ethnopharmacol 15(2):201–209

    Article  PubMed  CAS  Google Scholar 

  • Khullar N (2010) Antimicrobials from plants and their use in therapeutics and drug discovery. IIOABJ 1(3):31–37

    CAS  Google Scholar 

  • Kim SY, Kim J, Kim S, Oh M, Jung M (1994) Antioxidant activities of selected oriental herb extracts. J Am Oil Chem Soc 71(6):633–640

    Article  CAS  Google Scholar 

  • Ledezma E, Jorquera A, Bendezu H, Vivas J, Perez G (2002) Antiproliferative and leishmanicidal effect of ajoene on various Leishmania species: ultrastructural study. Parasitol Res 88(8):748–753

    Article  PubMed  Google Scholar 

  • Lee JB, Hayashi K, Hayashi T, Sankawa U, Maeda M (1999) Antiviral activities against HSV-1. HCMV. and HIV-1 of Rhamnan sulfate from Monostroma latissimum. Planta Med 65:439–441

    Article  PubMed  Google Scholar 

  • Maheswara M, Siddaiah V, Venkata Rao C (2006) Two new homoisoflavonoids from Caesalpinia pulcherrima. Chem Pharm Bull 54(8):1193–1195

    Article  PubMed  CAS  Google Scholar 

  • Marino M, Bersani C, Comi G (1999) Antimicrobial activity of the essential oils of Thymus vulgaris L. measured using a bioimpedometric method. J Food Protect 62(9):1017–1023

    CAS  Google Scholar 

  • Marino M, Bersani C, Comi G (2001) Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and compositae. Int J Food Microbiol 67(3):187–195

    Article  PubMed  CAS  Google Scholar 

  • Mihajilov-Krstev T, Kitic D, Stojanovic-Radic Z, Zlatkovic B.(2010) Antimicrobial activity of Satureja hortensis L. essential oil against pathogenic microbial strains. Arch Biol Sci 62:159-166.

    Article  Google Scholar 

  • Oliveira VCS, Moura DMS, Lopes JAD, De Andrade PP, Da Silva NH, Figueiredo RCBQ (2009) Effects of essential oils from Cymbopogon citratus (DC) Stapf., Lippia sidoides Cham., and Ocimum gratissimum L. on growth and ultrastructure of Leishmania chagasi promastigotes. Parasitol Res 104(5):1053–1059

    Article  PubMed  Google Scholar 

  • Pontin K et al (2008) In vitro and in vivo antileishmanial activities of a Brazilian green propolis extract. Parasitol Res 103(3):487–492

    Article  PubMed  Google Scholar 

  • Rajkumar S, Jebanesan A (2008) Bioactivity of flavonoid compounds from Poncirus trifoliata L. (Family: Rutaceae) against the dengue vector, Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 104(1):19–25

    Article  PubMed  CAS  Google Scholar 

  • Rajkumar S, Jebanesan A (2009) Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family: Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 104(2):337–340. doi:10.1007/s00436-008-1197-8

    Article  PubMed  CAS  Google Scholar 

  • Ramazani A, Sardari S, Zakeri S, Vaziri B (2010) In vitro antiplasmodial and phytochemical study of five Artemisia species from Iran and in vivo activity of two species. Parasitol Res 107(3):593–599

    Article  PubMed  Google Scholar 

  • Ramírez-Macías I, Marín C, Díaz JG, Rosales MJ, Gutiérrez-Sánchez R, Sánchez-Moreno M (2012) Leishmanicidal activity of nine novel flavonoids from Delphinium staphisagria. The Scientific World Journal doi:10.1100/2012/203646

  • Sadeghi-Nejad B, Saki J, Khademvatan S, Nanaei S (2011) In vitro antileishmanial activity of the medicinal plant—Satureja khuzestanica Jamzad. J Med Plant Res 5(24):5912–5915

    CAS  Google Scholar 

  • Santos DO, Coutinho CER, Madeira MF, et al (2008) Leishmaniasis treatment- a challenge that remains: a review. Parasitol Res 103: 1-10.

    Article  PubMed  Google Scholar 

  • Sfaei-Ghomi J, Meshkatalsadat MH, Shamai S, Hasheminejad M, Hassani A (2009) Chemical characterization of bioactive volatile molecules of four thymus species using nanoscale injection method. Dig J Nanomater Biostructures 4(4):835–841

    Google Scholar 

  • Soto J et al (2004) Comparison of generic to branded pentavalent antimony for treatment of new world cutaneous leishmaniasis. AmJTrop Med Hyg 71(5):577–581

    CAS  Google Scholar 

  • Tahir AE, Ibrahim AM, Satti GMH, Theander TG, Kharazmi A, Khalid SA (1998) The potential antileishmanial activity of some Sudanese medicinal plants. Phytother Res 12(8):576–579

    Article  Google Scholar 

  • Thangam C, Dhananjayan R (2003) Antiinflammatory potential of the seeds of Carum copticum Linn. Indian Pharmacol Soc 35:388–391

    Google Scholar 

  • Tripathi P, Ray S, Sunder S, Dube A, Naik S (2006) Identification of Leishmania donovani antigens stimulating cellular immune responses in exposed immune individuals. Clin Exp Immunol 143(2):380–388

    Article  PubMed  CAS  Google Scholar 

  • Trombetta D et al (2005) Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 49(6):2474–2478

    Article  PubMed  CAS  Google Scholar 

  • Ultee A, Bennik M, Moezelaar R (2002) The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 68(4):1561–1568

    Article  PubMed  CAS  Google Scholar 

  • Uslu C, Karasen RM, Sahin F, Taysi S, Akcay F (2003) Effects of aqueous extracts of Satureja hortensis L. on rhinosinusitis treatment in rabbit. J Ethnopharmacol 88(2):225–228

    Article  PubMed  Google Scholar 

  • Vrijsen R, Everaert L, Boeyé A (1988) Antiviral activity of flavones and potentiation by ascorbate. J Gen Virol 69:1749

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Hamburger M, Gueho J, Hostettmann K (1989) Antimicrobial flavonoids from Psiadia trinervia and their methylated and acetylated derivatives. Phytochemistry 28(9):2323–2327

    Article  CAS  Google Scholar 

  • Weidenborner M, Hindorf H, Jha HC, Tsotsonos P (1990) Antifungal activity of flavonoids against storage fungi of the genus Aspergillus. Phytochemistry 29(4):1103–1105

    Article  Google Scholar 

  • Weniger B et al (2001) Antiprotozoal activities of Colombian plants. J Ethnopharmacol 78(2):193–200

    Article  PubMed  CAS  Google Scholar 

  • Williams C et al (2003) Hydrosoluble formazan XTT: its application to natural products drug discovery for Leishmania. J Microbiol Meth 55(3):813–816

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Biotechnology Training Center of Alisina for partial financial funding and support of the project (grant no. BTCA-01/110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noushin Davoudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kheiri Manjili, H., Jafari, H., Ramazani, A. et al. Anti-leishmanial and toxicity activities of some selected Iranian medicinal plants. Parasitol Res 111, 2115–2121 (2012). https://doi.org/10.1007/s00436-012-3059-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-3059-7

Keywords

Navigation