Skip to main content
Log in

Antiamoebic properties of the actinomycete metabolites echinomycin A and tirandamycin A

  • Short Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Entamoeba histolytica infects 50 million people per year, causing 100,000 deaths worldwide. The primary treatment for amoebiasis is metronidazole. However, increased pathogen resistance combined with the drug’s toxic side effects encourages a search for alternative therapeutic agents. Secondary metabolites from marine bacteria are a promising resource for antiprotozoan drug discovery. In this study, extracts from a collection of marine-derived actinomycetes were screened for antiamoebic properties, and the activities of antibiotics echinomycin A and tirandamycin A are shown. Both antibiotics inhibited the in vitro growth of a E. histolytica laboratory strain (HM-1:IMSS) and a clinical isolate (Colombia, Col) at 30- to 60-μM concentrations. EIC50 (estimated inhibitory concentration) values were comparable for both antibiotics (44.3–46.3 μM) against the E. histolytica clinical isolate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Ali V, Nozaki T (2007) Current therapeutics, their problems, and sulfur-containing-amino-acid metabolism as a novel target against infections by “amitochondriate” protozoan parasites. Clin Microbiol Rev 20:164–187

    Article  PubMed  CAS  Google Scholar 

  • Austin CJ, Warren LG (1983) Induced division synchrony in Entamoeba histolytica. Effects of hydroxyurea and serum deprivation. Am J Trop Med Hyg 32:507–511

    PubMed  CAS  Google Scholar 

  • Bendesky A, Menendez D, Ostrosky-Wegman P (2002) Is metronidazole carcinogenic? Mutat Res 511:133–144

    Article  PubMed  CAS  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  PubMed  Google Scholar 

  • Ceri H, Olson ME, Stremick C, Read RR, Morck DW, Buret A (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776

    PubMed  CAS  Google Scholar 

  • Cotruvo JA, Dufour A, Rees G, Bartram J, Carr R, Cliver DO, Craun GF, Fayer R, Gannon VPJ (eds) (2004) Waterborne zoonoses: identification, causes and control. World Health Organization with IWA Publishing, London, pp 1–528

    Google Scholar 

  • Crowell AL, Sanders-Lewis KA, Secor WE (2003) In vitro metronidazole and tinidazole activities against metronidazole-resistant strains of Trichomonas vaginalis. Antimicrob Agents Chemother 47:1407–1409

    Article  PubMed  CAS  Google Scholar 

  • Espinosa A, Yan L, Zhang ZL, Foster L, Clark D, Li E, Stanley SL Jr (2001) The bifunctional Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2) protein is necessary for amoebic growth and survival and requires an intact C-terminal domain for both alcohol dehydrogenase and acetaldehyde dehydrogenase activity. J Biol Chem 276:20136–20143

    Article  PubMed  CAS  Google Scholar 

  • Espinosa A, Clark D, Stanley SL Jr (2004) Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2) as a target for anti-amoebic agents. J Antimicrob Chemother 54:56–59

    Article  PubMed  CAS  Google Scholar 

  • Espinosa A, Perdrizet G, Paz-y-Miño-C G, Lanfrachi R, Phay M (2009) Effects of iron depletion on Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2) and trophozoite growth: implications for antiamoebic therapy. J Antimicrob Chemother 63:675–678

    Article  PubMed  CAS  Google Scholar 

  • Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673

    Article  PubMed  CAS  Google Scholar 

  • Haque R, Huston CD, Hughes M, Houpt E, Petri WA (2003) Amebiasis. N Engl J Med 348:1565–1573

    Article  PubMed  Google Scholar 

  • Kenny JM, Kelly P (2009) Protozoal gastrointestinal infections. Medicine 37:599–602

    Article  Google Scholar 

  • LaPlante KL, Rybak MJ (2004) Clinical glycopeptide-intermediate staphylococci tested against arbekacin, daptomycin, and tigecycline. Diagn Microbiol Infect Dis 50:125–130

    Article  PubMed  CAS  Google Scholar 

  • Lee VJ, Rinehart KL Jr (1980) C NMR spectra of streptolydigin, tirandamycin, and related degradation products. J Antibiot 33:408–415

    Article  PubMed  CAS  Google Scholar 

  • MacKellar FA, Grostic MF, Olson EC, Wnuk RJ (1971) Tirandamycin. I. Structure assignment. J Am Chem Soc 93:4943–4945

    Article  PubMed  CAS  Google Scholar 

  • Matz C, Deines P, Boenigk J, Arndt H, Eberl L, Kjelleberg S, Jürgens K (2004) Effect of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl Environ Microbiol 70:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • May LG, Madine MA, Waring MJ (2004) Echinomycin inhibits chromosomal DNA replication and embryonic development in vertebrates. Nucleic Acids Res 32:65–72

    Article  PubMed  CAS  Google Scholar 

  • Meyer CE (1971) Tirandamycin, a new antibiotic isolation and characterization. J Antibiot 24:558–560

    Article  PubMed  CAS  Google Scholar 

  • Ong LK, Wolfson N (1970) Some growth characteristics of axenically cultivated Entamoeba histolytica-like amebae (Huff strain). J Parasitol 56:897–903

    Article  PubMed  CAS  Google Scholar 

  • Osato T, Ueda M, Fukuyama S, Yagishita K, Okami Y, Umezawa H (1955) Production of tertiomycin (a new antibiotic substance), azomycin and eurocidin by S. eurocidicus. J Antibiot 8:105–109

    PubMed  CAS  Google Scholar 

  • Otoguro K, Ishiyama A, Namatame M, Nishihara A, Furusawa T, Masuma R, Shiomi K, Takahashi Y, Yamada H, Omura S (2008) Selective and potent in vitro antitrypanosomal activities of ten microbial metabolites. J Antibiot 61:372–378

    Article  PubMed  CAS  Google Scholar 

  • Park Y, Shin W, Kim S (2008) In vitro and in vivo activities of echinomycin against clinical isolates of Staphylococcus aureus. J Antimicrob Chemother 61:163–168

    Article  PubMed  CAS  Google Scholar 

  • Pritt BS, Clark CG (2008) Amebiasis. Mayo Clin Proc 83:1154–1159

    Article  PubMed  Google Scholar 

  • Prudhomme J, McDaniel E, Ponts N, Bertani S, Fenical W, Le Roch K (2008) Marine actinomycetes: a new source of compounds against the human malaria parasite. PLoS One 3:e2335

    Article  PubMed  Google Scholar 

  • Reusser F (1976) Tirandamycin, an inhibitor of bacterial ribonucleic acid polymerase. Antimicrob Agents Chemother 10:618–622

    Article  PubMed  CAS  Google Scholar 

  • Socha AM, Long RA, Rowley DC (2007) Bacillamides from a hypersaline microbial mat bacterium. J Nat Prod 70:1793–1795

    Article  PubMed  CAS  Google Scholar 

  • Socha AM, LaPlante KL, Russell DJ, Rowley DC (2009) Structure—activity studies of echinomycin antibiotics against drug-resistant and biofilm-forming Staphylococcus aureus and Enterococcus faecalis. Bioorg Med Chem Lett 19:1504–1507

    Article  PubMed  CAS  Google Scholar 

  • Stanley SL Jr (2003) Amoebiasis. Lancet 361:1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Thelaus J, Forsman M, Andersson A (2008) Role of productivity and protozoan abundance for the occurrence of predation-resistant bacteria in aquatic systems. Microb Ecol 56:18–28

    Article  PubMed  Google Scholar 

  • Walsh JA (1986) Amebiasis in the world. Arch Invest Med 17:385–359

    Google Scholar 

  • Waring MJ, Wakelin LP (1974) Echinomycin: a bifunctional intercalating antibiotic. Nature 252:653–657

    Article  PubMed  CAS  Google Scholar 

  • Wassmann C, Hellberg A, Tannich E, Bruchhaus I (1999) Metronidazole resistance in the protozoan parasite Entamoeba histolytica is associated with increased expression of iron-containing superoxide dismutase and peroxiredoxin and decreased expression of ferredoxin 1 and flavin reductase. J Biol Chem 274:26051–26056

    Article  PubMed  CAS  Google Scholar 

  • Ximénez C, Morán P, Rojas L, Valadez A, Gómez A (2009) Reassessment of the epidemiology of amebiasis: state of the art. Infect Genet Evol 9:1023–1032

    Google Scholar 

  • Yu Z, Vodanovic-Jankovic S, Ledeboer N, Huang S, Rajski SR, Kron M, Shen B (2011) Tirandamycins from Streptomyces sp. 17944 inhibiting the parasite Brugia malayi asparagine tRNA synthetase. Org Lett 13:2034–2037

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Regine LanFranchi for technical assistance. The E. histolytica HM-1:IMSS strain was provided by Sam Stanley and Lynne Foster at Washington University, St Louis, MO, USA. The E. histolytica Col strain was obtained from Dan Eichinger at New York University, NY, USA. A. Espinosa was supported by the RI-INBRE Award # 2P20RR016457-10 and 2P20RR016457-11 from the National Center for Research Resources (NCRR), NIH. The content of this report is solely the responsibility of the authors and does not necessarily represent the official views of the NCRR or the NIH. This research was further supported by NOAA Grant NA04OAR4600193 to D. Rowley. The RI-INBRE Core Facility used in this study was funded by the NIH, NCRR (Grant P20-RR016457).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avelina Espinosa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 198 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinosa, A., Socha, A.M., Ryke, E. et al. Antiamoebic properties of the actinomycete metabolites echinomycin A and tirandamycin A. Parasitol Res 111, 2473–2477 (2012). https://doi.org/10.1007/s00436-012-3019-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-3019-2

Keywords

Navigation