Skip to main content

Advertisement

Log in

Avian malaria infections in western European mosquitoes

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

In the complex life cycle of avian malaria parasites (Plasmodium sp.), we still have a poor understanding on the vector–parasite relationships. This study described the community of potential avian malaria vectors in four Portuguese reedbeds. We tested if their geographical distribution differed, and investigated on their Plasmodium infections. The mosquitoes’ feeding preferences were evaluated using CO2, mice, and birds as baits. The most abundant species were Culex pipiens, Culex theileri, and Ochlerotatus caspius (and, in one site, Coquillettidia richiardii). Plasmodium lineages SGS1 and SYAT05 were found in unengorged Cx. pipiens and Cx. theileri, respectively, suggesting that these mosquitoes were competent vectors of those lineages. The species’ abundance was significantly different among sites, which may help to explain the observed differences in the prevalence of SGS1. At the study sites, SGS1 was detected in the most abundant mosquito species and reached a high prevalence in the most abundant passerine species. Probably, this parasite needs abundant hosts in all phases of its cycle to keep a good reservoir of infection in all its stages. Cq. richiardii showed an opportunistic feeding behavior, while Cx. pipiens appeared to be more mammophilic than previously described, perhaps because the used avian bait was not its preferential target. In one of the study sites, mosquitoes seem to be attracted to the Spotless Starling Sturnus unicolor, an abundant bird species that may be an important local reservoir of avian malaria infections. To our knowledge, this is the first report of detection of avian Plasmodium DNA from European mosquitoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almeida APG, Galão RP, Sousa CA, Novo MT, Parreira R, Pinto J, Piedade J, Esteves A (2008) Potential mosquito vectors of arboviruses in Portugal: species, distribution, abundance and West Nile infection. Trans Roy Soc Trop Med Hyg 102(8):823–832. doi:10.1016/j.trstmh.2008.03.011

    Article  PubMed  CAS  Google Scholar 

  • Apperson CS, Hassan HK, Harrison BA, Savage HM, Aspen SE, Farajollahi A, Crans W, Daniels TJ, Falco RC, Benedict M, Anderson M, Mcmillen L, Unnasch TR (2004) Host feeding patterns of established and potential mosquito vectors of West Nile virus in the eastern United States. Vector Borne Zoonotic Dis 4(1):71–82. doi:10.1089/153036604773083013

    Article  PubMed  Google Scholar 

  • Atkinson CT, van Riper C III (1991) Pathogenicity and epizootiology of avian hematozoa: Plasmodium, Leucocytozoon and Haemoproteus. In: Loye J, Zuk M (eds) Bird-parasite interactions: ecology, evolution, and behavior. Oxford University Press, New York, pp 19–48

    Google Scholar 

  • Balenghien T, Fouque F, Sabatier P, Bicout DJ (2006) Horse-, bird-, and human-seeking behavior and seasonal abundance of mosquitoes in a West Nile virus focus of southern France. J Med Entomol 43(5):936–946. doi:10.1603/0022-2585(2006)43[936:hbahba]2.0.co;2

    Article  PubMed  CAS  Google Scholar 

  • Baylis M, ElHasnaoui H, Bouayoune H, Touti J, Mellor PS (1997) The spatial and seasonal distribution of African horse sickness and its potential Culicoides vectors in Morocco. Med Vet Entomol 11(3):203–212. doi:10.1111/j.1365-2915.1997.tb00397.x

    Article  PubMed  CAS  Google Scholar 

  • Bensch S, Stjernman M, Hasselquist D, Ostman O, Hansson B, Westerdahl H, Pinheiro RT (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc B 267(1452):1583–1589. doi:10.1098/rspb.2000.1181

    Article  PubMed  CAS  Google Scholar 

  • Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9(5):1353–1358. doi:10.1111/j.1755-0998.2009.02692.x

    Article  PubMed  Google Scholar 

  • Cicero C, Johnson NK (2001) Higher-level phylogeny of new world vireos (Aves: Vireonidae) based on sequences of multiple mitochondrial DNA genes. Mol Phylogenet Evol 20(1):27–40. doi:10.1006/mpev.2001.0944

    Article  PubMed  CAS  Google Scholar 

  • Cox FEG (1993) Modern parasitology. Blackwell Science, Oxford

    Book  Google Scholar 

  • Dimitrov D, Zehtindjiev P, Bensch S (2010) Genetic diversity of avian blood parasites in SE Europe: cytochrome b lineages of the genera Plasmodium and Haemoproteus (Haemosporida) from Bulgaria. Acta Parasitol 55(3):201–209. doi:10.2478/s11686-010-0029-z

    Article  CAS  Google Scholar 

  • Ejiri H, Sato Y, Sawai R, Sasaki E, Matsumoto R, Ueda M, Higa Y, Tsuda Y, Omori S, Murata K, Yukawa M (2009) Prevalence of avian malaria parasite in mosquitoes collected at a zoological garden in Japan. Parasitol Res 105(3):629–633. doi:10.1007/s00436-009-1434-9

    Article  PubMed  Google Scholar 

  • Ejiri H, Sato Y, Kim KS, Tsuda Y, Murata K, Saito K, Watanabe Y, Shimura Y, Yukawa M (2011) Blood meal identification and prevalence of avian malaria parasite in mosquitoes collected at Kushiro Wetland, a subarctic zone of Japan. J Med Entomol 48(4):904–908. doi:10.1603/me11053

    Article  PubMed  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3(5):294–299

    PubMed  CAS  Google Scholar 

  • Gager AB, Loaiza JDR, Dearborn DC, Bermingham E (2008) Do mosquitoes filter the access of Plasmodium cytochrome b lineages to an avian host? Mol Ecol 17:2552–2561. doi:10.1111/j.1365-294X.2008.03764.x

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hellgren O, Krizanauskiene A, Valkiunas G, Bensch S (2007) Diversity and phylogeny of mitochondrial cytochrome B lineages from six morphospecies of avian Haemoproteus (Haemosporida: Haemoproteidae). J Parasitol 93:889–896. doi:10.1645/GE-1051R1.1

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P (2006) West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4(4):606–610. doi:10.1371/journal.pbio.0040082

    Article  CAS  Google Scholar 

  • Kim KS, Tsuda Y (2010) Seasonal changes in the feeding pattern of Culex pipiens pallens govern the transmission dynamics of multiple lineages of avian malaria parasites in Japanese wild bird community. Mol Ecol 19(24):5545–5554. doi:10.1111/j.1365-294X.2010.04897.x

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Tsuda Y, Sasaki T, Kobayashi M, Hirota Y (2009a) Mosquito blood-meal analysis for avian malaria study in wild bird communities: laboratory verification and application to Culex sasai (Diptera: Culicidae) collected in Tokyo, Japan. Parasitol Res 105(5):1351–1357. doi:10.1007/s00436-009-1568-9

    Article  PubMed  Google Scholar 

  • Kim KS, Tsuda Y, Yamada A (2009b) Bloodmeal identification and detection of avian malaria parasite from mosquitoes (Diptera: Culicidae) Inhabiting coastal areas of Tokyo Bay, Japan. J Med Entomol 46(5):1230–1234

    Article  PubMed  Google Scholar 

  • Kimura M, Darbro JM, Harrington LC (2010) Avian malaria parasites share congeneric mosquito vectors. J Parasitol 96(1):144–151. doi:10.1645/ge-2060.1

    Article  PubMed  CAS  Google Scholar 

  • Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM, Komar N, Panella NA, Allen BC, Volpe KE, Davis BS, Roehrig JT (2000) Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clinic Microbiol 38(11):4066–4071

    CAS  Google Scholar 

  • Martinsen ES, Waite JL, Schall JJ (2007) Morphologically defined subgenera of Plasmodium from avian hosts: test of monophyly by phylogenetic analysis of two mitochondrial genes. Parasitology 134:483–490. doi:10.1017/s0031182006001922

    Article  PubMed  CAS  Google Scholar 

  • Ngo KA, Kramer LD (2003) Identification of mosquito bloodmeals using polymerase chain reaction (PCR) with order-specific primers. J Med Entomol 40(2):215–222. doi:10.1603/0022-2585-40.2.215

    Article  PubMed  CAS  Google Scholar 

  • Njabo KY, Cornel AJ, Sehgal RN, Loiseau C, Buermann W, Harrigan RJ, Pollinger J, Valkiūnas G, Smith TB (2009) Coquillettidia (Culicidae, Diptera) mosquitoes are natural vectors of avian malaria in Africa. Malar J 8:193. doi:10.1186/1475-2875-8-193

    Article  PubMed  Google Scholar 

  • Njabo KY, Cornel AJ, Bonneaud C, Toffelmier E, Sehgal RNM, Valkiūnas G, Russell AF, Smith TB (2011) Nonspecific patterns of vector, host and avian malaria parasite associations in a central African rainforest. Mol Ecol 20(5):1049–1061. doi:10.1111/j.1365-294X.2010.04904.x

    Article  PubMed  CAS  Google Scholar 

  • Osório HC, Amaro F, Zé-Zé L, Pardal S, Mendes L, Ventim R, Ramos JA, Nunes S, Workgroup R, Alves MJ (2010) Mosquito species distribution in mainland Portugal 2005-2008. Eur Mosq Bull 28

  • Palinauskas V, Kosarev V, Shapoval A, Bensch S, Valkiūnas G (2007) Comparison of mitochondrial cytochrome b lineages and morphospecies of two avian malaria parasites of the subgenera Haemamoeba and Giovannolaia (Haemosporida: Plasmodiidae). Zootaxa 1626:39–50

    Google Scholar 

  • Ponçon N, Toty C, L’Ambert G, Le Goff G, Brengues C, Schaffner F, Fontenille D (2007) Biology and dynamics of potential malaria vectors in Southern France. Malar J 6. doi:10.1186/1475-2875-6-18

  • Ribeiro H, Ramos HC (1999) Identification keys of the mosquitoes of Continental Portugal, Açores and Madeira. Eur Mosq Bull 3:1–11

    Google Scholar 

  • Savage HM, Aggarwal D, Apperson CS, Katholi CR, Gordon E, Hassan HK, Anderson M, Charnetzky D, Millen LMC, Unnasch EA, Unnasch TR (2007) Host Choice and West Nile virus infection rates in blood-fed mosquitoes, including members of the Culex pipiens complex, from Memphis and Shelby County, Tennessee, 2002–2003. Vector Borne Zoonotic Dis 7(3):365–386. doi:10.1089/vbz.2006.0602

    Article  PubMed  Google Scholar 

  • Schaffner F, Angel G, Geoffroy B, Hervy JP, Rhaiem A, Brunhes J (2001) The mosquitoes of Europe: an identification and training programme. IRD Éditions (CD-ROM), Montepellier, France

    Google Scholar 

  • Shurulinkov P, Ilieva M (2009) Spatial and temporal differences in the blood parasite fauna of passerine birds during the spring migration in Bulgaria. Parasitol Res 104(6):1453–1458. doi:10.1007/s00436-009-1349-5

    Article  PubMed  Google Scholar 

  • Smith DL, Dushoff J, McKenzie FE (2004) The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol 2(11):e368. doi:10.1371/journal.pbio.0020368

    Article  PubMed  Google Scholar 

  • Sol D, Jovani R, Torres J (2000) Geographical variation in blood parasites in feral pigeons: the role of vectors. Ecography 23(3):307–314

    Article  Google Scholar 

  • Statsoft Inc (2011) Electronic statistics textbook. StatSoft. WEB: http://www.statsoft.com/textbook/, Tulsa, OK, USA

  • Suom C, Ginsberg HS, Bernick A, Klein C, Buckley PA, Salvatore C, LeBrun RA (2010) Host-seeking activity and avian host preferences of mosquitoes associated with West Nile virus transmission in the northeastern USA. J Vector Ecol 35(1):69–74

    Article  PubMed  Google Scholar 

  • Valkiūnas G (2005) Avian malaria parasites and other haemosporidia, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • van Riper C III, van Riper SG, Goff ML, Laird M (1986) The epizootiology and ecology significance of malaria in Hawaiian land birds. Ecol Monogr 56:327–344

    Article  Google Scholar 

  • Ventim R, Tenreiro P, Grade N, Encarnação P, Araújo M, Mendes L, Pérez-Tris J, Ramos J (2011) Characterization of haemosporidian infections in warblers and sparrows at south-western European reed beds. J Ornithol:1–8. doi:10.1007/s10336-011-0767-1

  • Ventim R, Morais J, Pardal S, Mendes L, Ramos JA, Pérez-Tris J (2012) Host-parasite associations and host-specificity in haemoparasites of reed bed passerines. Parasitology 139:310–316. doi:10.1017/S0031182011002083

    Article  PubMed  Google Scholar 

  • Waldenström J, Bensch S, Kiboi S, Hasselquist D, Ottosson U (2002) Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Ecol 11(8):1545–1554. doi:10.1046/j.1365-294X.2002.01523.x

    Article  PubMed  Google Scholar 

  • Waldenström J, Bensch S, Hasselquist D, Ostman O (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90(1):191–194. doi:10.1645/GE-3221RN

    Article  PubMed  Google Scholar 

  • White BJ, Andrew DR, Mans NZ, Ohajuruka OA, Garvin MC (2006) West Nile virus in mosquitoes of northern Ohio, 2003. AmJTrop Med Hyg 75(2):346–349

    Google Scholar 

  • Whiteman NK, Sanchez P, Merkel J, Klompen H, Parker PG (2006) Cryptic host specificity of an avian skin mite (Epidermoptidae) vectored by louseflies (Hippoboscidae) associated with two endemic Galapagos bird species. J Parasitol 92(6):1218–1228. doi:10.1645/ge-918r.1

    Article  PubMed  CAS  Google Scholar 

  • Zehtindjiev P, Ilieva M, Westerdahl H, Hansson B, Valkiūnas G, Bensch S (2008) Dynamics of parasitemia of malaria parasites in a naturally and experimentally infected migratory songbird, the great reed warbler Acrocephalus arundinaceus. Exp Parasitol 119(1):99–110. doi:10.1016/j.exppara.2007.12.018

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financed by the Portuguese Fundação para a Ciência e Tecnologia (grant SFRH/BD/28930/2006 to R.V.). The Instituto para a Conservação da Natureza e Biodiversidade supplied permits for mosquito capture and help in the field work. The Pato Association also presented logistic support in Tornada. The authors would like to thank the contribution of Diego Gonzálvez, Helder Cardoso, Joana Morais, and Saúl Manzano to the field work. In the lab, Joana Morais, Sara Pardal and Sandra Reis were of precious help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Ventim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventim, R., Ramos, J.A., Osório, H. et al. Avian malaria infections in western European mosquitoes. Parasitol Res 111, 637–645 (2012). https://doi.org/10.1007/s00436-012-2880-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-2880-3

Keywords

Navigation