Skip to main content
Log in

Repellent effect of Salvia dorisiana, S. longifolia, and S. sclarea (Lamiaceae) essential oils against the mosquito Aedes albopictus Skuse (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Aedes albopictus (Diptera: Culicidae) has been one of the fastest spreading insects over the past 20 years. Its medical importance is due to the aggressive daytime human-biting behavior and the ability to vector many viruses, including dengue, LaCrosse, Eastern Equine encephalitis and West Nile viruses. In this research, the essential oils (EOs) extracted from fresh air dried leaves of Salvia dorisiana, S. longifolia, and S. sclarea (Lamiaceae) were evaluated for their repellent activity against A. albopictus by using the human-bait technique. The EOs chemical composition was also investigated, and EOs were divided in three different profiles on the basis of their chemical composition: EO with large amount of monoterpenes from S. sclarea, EO rich in oxygenated sesquiterpenes from S. dorisiana, and S. longifolia EO characterized by similar percentages of monoterpenes and sesquiterpenes. The efficacy protection from S. dorisiana, S. longifolia, and S. sclarea EOs, at dosages ranging from 0.004 to 0.4 μL cm−2 of skin, was evaluated during 120 min of observation. Results indicated that S. dorisiana, S. longifolia, and S. sclarea EOs had a significant repellent activity (RD50 = 0.00035, 0.00049, and 0.00101 μL cm−2, respectively), with differences in repellency rates, as a function of oil, dosage, and observation time. S. dorisiana was the most effective oil: at the two higher dosages, it gave almost complete protection (with a protective efficacy of 90.99% and 95.62%, respectively) for 90 min. The best protection time was achieved with S. dorisiana essential oil. It ranged from 9.2 to 92.4 min. Protection times of S. longifolia and S. sclarea oils ranged from 3.2 to 60 min, and from 3.6 to 64.2 min, respectively. Our findings clearly reveal that these EOs have a good repellent activity against A. albopictus, therefore they can be proposed to improve the efficacy of repellent formulations against the Asian tiger mosquito.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams RP (1995) Identification of essential oil components by gas chromatography mass spectroscopy. Allured Publishing, Carol Stream

    Google Scholar 

  • Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490

    Article  PubMed  Google Scholar 

  • Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vect Bor Zoon Dis 7:76–85

    Article  Google Scholar 

  • Brown AWA (1986) Insecticide resistance in mosquitoes: a pragmatic review. J Am Mosq Control Assoc 2:123–140

    PubMed  CAS  Google Scholar 

  • Cetin H, Cinbilgel I, Yanikoglu A, Gokceoglu M (2006) Larvicidal activity of some Labiatae (Lamiaceae) plant extracts from Turkey. Phytother Res 20:1088–1090

    Article  PubMed  Google Scholar 

  • Cheng SS, Chang HT, Chang ST, Tsai KH, Chen WJ (2003) Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour Technol 89:99–102

    Article  PubMed  CAS  Google Scholar 

  • Choi W, Park B, Ku S, Lee S (2002) Repellent activity of essential oils and monoterpenes against Culex pipiens pallens. J Am Mosq Control Assoc 18:348–351

    PubMed  CAS  Google Scholar 

  • Connolly JD, Hill RA (1991) Dictionary of terpenoids. Chapman and Hall, London

    Google Scholar 

  • Conti B, Canale A, Bertoli A, Gozzini F, Pistelli L (2010) Essential oil composition and larvicidal activity of six Mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res 107:1455–1462

    Article  PubMed  Google Scholar 

  • Conti B, Benelli G, Flamini G, Cioni PL, Profeti R, Ceccarini L, Macchia M, Canale A (2011) Larvicidal and repellent activity of Hyptis suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res doi:10.1007/s00436-011-2730-8, online first

  • Dalla Pozza G, Majori G (1991) First record of Aedes albopictus establishment in Italy. J Am Mosq Control Assoc 8:318–320

    Google Scholar 

  • Davies NW (1990) Gas chromatographic retention index of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20 M phases. J Chromatogr 503:1–24

    Article  CAS  Google Scholar 

  • Elango G, Rahuman AA, Kamaraj C, Bagavan A, Zahir AA (2011) Efficacy of medicinal plant extracts against malarial vector, Anopheles subpictus Grassi. Parasitol Res 108:1437–1445

    Article  PubMed  Google Scholar 

  • Estrada-Franco J (1995) Biology, disease relationship, and control of Aedes albopictus. PAHO technical paper p. 42

  • Fradin MS, Day JF (2002) Comparative efficacy of insect repellents against mosquito bites. New Engl J Med 347:13–18

    Article  PubMed  CAS  Google Scholar 

  • Fraternale D, Giampieri L, Bucchini A, Ricci D, Epifano F, Genovese S, Curini M (2005) Composition and antifungal activity of essential oil of S. sclarea from Italy. Chem Nat Comp 41:604–606

    Article  CAS  Google Scholar 

  • Gillij YG, Gleiser RM, Zygadlo JA (2008) Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour Technol 99:2507–2515

    Article  PubMed  CAS  Google Scholar 

  • Gleiser RM, Bonino MA, Zygadlo JA (2011) Repellence of essential oils of aromatic plants growing in Argentina against Aedes aegypti. Parasitol Res 108:69–78

    Article  PubMed  Google Scholar 

  • Gratz NG (2004) Critical review of the vector status of Aedes albopictus. Med Vet Entomol 18:215–227

    Article  PubMed  CAS  Google Scholar 

  • Halim AF, Collins RP (1975) Essential oil of Salvia dorisiana (Standley). J Agric Food Chem 23:506–510

    Article  CAS  Google Scholar 

  • Hawley WA (1988) The biology of Aedes albopictus. J Am Mosq Control Assoc 4:1–40

    Google Scholar 

  • Jennings W, Shibamoto T (1980) Qualitative analysis of flavor and fragrance volatiles by glass capillary chromatography. Academic, New York

    Google Scholar 

  • Juliano SA, Lounibos LP (2005) Ecology of invasive mosquitoes: effects on resident species and on human health. Ecol Lett 8:558–574

    Article  PubMed  Google Scholar 

  • Kamaraj C, Rahuman AA, Mahapatra A, Bagavan A, Elango G (2010) Insecticidal and larvicidal activities of medicinal plant extracts against mosquitoes. Parasitol Res 107(6):1337–1349

    Article  PubMed  Google Scholar 

  • Kamgang B, Marcombe S, Chandre F, Nchoutpouen E, Nwane P, Etang J, Corbelle V, Paupy C (2011) Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa. Par Vect 4:79

    Article  Google Scholar 

  • Kamsuk K, Choochote W, Chaithong U, Jitpakdi A, Tippawangkosol P, Riyong D, Pitasawat B (2007) Effectivenes of Zanthoxylum piperitum-derived essential oil as an alternative repellent under laboratory and field application. Parasitol Res 100:339–345

    Article  PubMed  CAS  Google Scholar 

  • Kang SH, Kim MK, Seo DK, Noh DJ, Yang JO, Yoon C, Kim GH (2009) Comparative repellency of essential oils against Culex pipiens pallens (Diptera: Culicidae). J Kor Soc Appl Biol Chem 52:353–359

    Article  CAS  Google Scholar 

  • Karunamoorthi K, Ilango K, Murugan K (2010) Laboratory evaluation of traditionally used plant-based insect repellent against the malaria vector Anopheles arabiensis Patton (Diptera: Culicidae). Parasitol Res 106:1217–1223

    Article  PubMed  Google Scholar 

  • Klun JA, Khrimian A, Debboun M (2006) Repellent and deterrent effects of SS220, Picaridin, and Deet suppress human blood feeding by Aedes aegypti, Anopheles stephensi, and Phlebotomus papatasi. J Med Entomol 43:34–39

    Article  PubMed  CAS  Google Scholar 

  • Koliopoulos G, Danae Pitarokili D, Kioulos E, Michaelakis A, Tzakou O (2010) Chemical composition and larvicidal evaluation of Mentha, Salvia, and Melissa essential oils against the West Nile virus mosquito Culex pipiens. Parasitol Res 107:327–335

    Article  PubMed  Google Scholar 

  • Koren G, Matsui D, Bailey B (2003) DEET-based insect repellents: safety implications for children and pregnant and lactating women. Canad Med Assoc J 169:209–212

    Google Scholar 

  • Mansour F, Ravid U, Putievsky E (1986) Studies of the effects of essential oils isolated from 14 species of Labiatae on the carmine spider mite, Tetranychus cinnabarinus. Phytoparasitica 14:137–142

    Article  CAS  Google Scholar 

  • Masetti A, Maini S (2006) Arm in cage tests to compare skin repellents against bites of Aedes albopictus. Bull Insectol 59:157–160

    Google Scholar 

  • Massada Y (1976) Analysis of essential oils by gas chromatography and mass spectometry. Wiley, New York

    Google Scholar 

  • Mathew J, Thoppil JE (2011) Chemical composition and mosquito larvicidal activities of Salvia essential oils. Pharm Biol 49:456–463

    Article  PubMed  CAS  Google Scholar 

  • Mathew N, Anitha MG, Bala TSL, Sivakumar SM, Narmadha R, Kalyanasundaram M (2009) Larvicidal activity of Saraca indica, Nyctanthes arbor-tristis and Clitoria ternatea extracts against three mosquito vector species. Parasitol Res 104:1017–1025

    Article  PubMed  Google Scholar 

  • Michaelakis A, Strongilos AT, Bouzas EA, Koliopoulos G, Couladouros EA (2009) Larvicidal activity of naturally occurring naphthoquinones and derivatives against the West Nile virus vector Culex pipiens. Parasitol Res 104:657–662

    Article  PubMed  Google Scholar 

  • Moore CG, Mitchell CJ (1997) Aedes albopictus in the United States: ten-year presence and public health implications. Emerg Infectious Dis 3:329–334

    Article  CAS  Google Scholar 

  • Pavela R (2005) Insecticidal activity of some essential oils against larvae of Spodoptera littoralis. Fitoterapia 76:691–696

    Article  PubMed  CAS  Google Scholar 

  • Pavela R (2008) Insecticidal properties of several essential oils on the house fly (Musca domestica L.). Phytother Res 22:274–278

    Article  PubMed  CAS  Google Scholar 

  • Pitarokili D, Michaelakis A, Koliopoulos G, Giatropoulos A, Tzakou O (2011) Chemical composition, larvicidal evaluation, and adult repellency of endemic Greek Thymus essential oils against the mosquito vector of West Nile virus. Parasitol Res 109:425–430

    Article  PubMed  Google Scholar 

  • Prajapati V, Tripathi AK, Aggrawal KK, Khanuja SPS (2005) Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresour Technol 96:1749–1757

    Article  PubMed  CAS  Google Scholar 

  • Pushpanathan T, Jebanesan A, Govindarajan M (2006) Larvicidal, ovicidal and repellent activities of Cymbopogan citrates Stapf (Graminae) essential oil against the filarial mosquito Culex quinquefasciatus (Say) (Diptera: Culicidae). Tropical Biomed 23:208–212

    CAS  Google Scholar 

  • Rai KS (1991) Aedes albopictus in Americas. Annu Rev Entomol 36:459–484

    Article  PubMed  CAS  Google Scholar 

  • Rajkumar S, Jebanesan A (2005) Repellency of volatile oils from Moschosma polystachyum and Solanum xanthocarpum against filarial vector Culex quinquefasciatus Say. Tropical Biomed 22:139–142

    CAS  Google Scholar 

  • Reiter P, Sprenger D (1987) The used tire trade: a mechanism for the worldwide dispersal of container breeding mosquitoes. J Am Mosq Control Assoc 3:494–501

    PubMed  CAS  Google Scholar 

  • Robert LL, Olson JK (1989) Susceptibility of female Aedes albopictus from Texas to commonly used adulticides. J Am Mosq Control Assoc 5:251–253

    PubMed  CAS  Google Scholar 

  • Sampson BJ, Tabanca N, Kirimer N, Demirci B, Baser KHC, Khan IA, Spiers JM, Wedge DE (2005) Insecticidal activity of 23 essential oils and their major compounds against adult Lipaphis pseudobrassicae (Davis) (Aphididae: Homoptera). Pest Manag Sci 61:1122–1128

    Article  PubMed  CAS  Google Scholar 

  • Schreck CE, Mc Govern TP (1989) Repellents and other personal protection strategies against Aedes albopictus. J Am Mosq Control Assoc 5:247–252

    PubMed  CAS  Google Scholar 

  • Shroyer DA (1986) Aedes albopictus and arboviruses: a concise review of the literature. J Am Mosq Control Assoc 2:424–428

    PubMed  CAS  Google Scholar 

  • Swigar AA, Silverstein RM (1981) Monoterpenes. Aldrich Chemical Co, Milwaukee

    Google Scholar 

  • Tucker AO, Maciarello MJ (1994) The essential oil of Salvia dorisiana Standley. J Ess Oil Res 6:79–80

    Article  CAS  Google Scholar 

  • WHO (2009) Guidelines for efficacy testing of mosquito repellents for human skin. WHO/HTM/NTD/WHOPES/2009.4. Control of neglected tropical diseases. World Health Organization, Geneva

  • Yang YC, Lee SG, Lee HK, Kim MK, Lee SH, Lee HS (2002) A piperidine amide extracted from Piper longum L. fruit shows activity against Aedes aegypti mosquito larvae. J Agric Food Chem 50:3765–3767

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Marco Cotrufo and Francesca Baroncelli (Sant'Anna School of Advanced Studies, Pisa) for proofreading the English, and the ten patient volunteers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Conti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conti, B., Benelli, G., Leonardi, M. et al. Repellent effect of Salvia dorisiana, S. longifolia, and S. sclarea (Lamiaceae) essential oils against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 111, 291–299 (2012). https://doi.org/10.1007/s00436-012-2837-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-2837-6

Keywords

Navigation