Skip to main content

Advertisement

Log in

Identification and molecular characterization of a novel signaling molecule 14-3-3 epsilon in Clonorchis sinensis excretory/secretory products

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Increasing evidence shows that 14-3-3 proteins are involved in many biology events in addition to signal transduction. Extensive investigations on structural and biochemical features of these signaling molecules have implied their importance in the biological process. In the present study, we have identified and characterized the 14-3-3 epsilon (Cs14-3-3) in Clonorchis sinensis that causes human clonorchiasis. Recombinant protein was expressed in Escherichia coli (E. coli) and identified by MALDI-TOF/TOF. Immunoblot results revealed that Cs14-3-3 was a component of excretory/secretory products. Ligand blot assay indicated that 14-3-3 epsilon could bind C. sinensis MAPKAPK 2 in a nonphosphorylation-dependent manner. This protein could be detected at four stages of the life cycle by RT-PCR experiments and immunolocalization showed that Cs14-3-3 was extensively distributed in C. sinensis, especially at the outer surface and the sucker of adult worm and cyst wall of metacercaria. Taken together, 14-3-3 epsilon might play some roles in the development of the parasites. In addition, Cs14-3-3 epsilon should be addressed for the diagnostic value in C. sinensis infection in consideration of high sensitivity and specificity. As an immune stimulus, C. sinensis 14-3-3 epsilon was found to provoke a Th1/Th2 balanced immune response by inducing high levels of both IgG1 and IgG2a. Recombinant Cs14-3-3 conferred effective protection both in worm reduction rate and egg reduction rate, suggesting that the signaling molecule Cs14-3-3 was a promising vaccine candidate against C. sinensis infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Benz C, Engstler M, Hillmer S, Clayton C (2010) Depletion of 14-3-3 proteins in bloodstream-form Trypanosoma brucei inhibits variant surface glycoprotein recycling. Int J Parasitol 40(5):629–634

    Article  PubMed  CAS  Google Scholar 

  • Bridges D, Moorhead GB (2005) 14-3-3 proteins: a number of functions for a numbered protein. Sci STKE 2005(296):re10

  • Chaithirayanon K, Grams R, Vichasri-Grams S, Hofmann A, Korge G, Viyanant V, Upatham ES, Sobhon P (2006) Molecular and immunological characterization of encoding gene and 14-3-3 protein 1 in Fasciola gigantica. Parasitology 133(Pt 6):763–775

    Article  PubMed  CAS  Google Scholar 

  • Choi BI, Han JK, Hong ST, Lee KH (2004) Clonorchiasis and cholangiocarcinoma: etiologic relationship and imaging diagnosis. Clin Microbiol Rev 17(3):540–552

    Article  PubMed  Google Scholar 

  • Clokie S, Falconer H, Mackie S, Dubois T, Aitken A (2009) The interaction between casein kinase Ialpha and 14-3-3 is phosphorylation dependent. FEBS J 276(23):6971–6984

    Article  PubMed  CAS  Google Scholar 

  • El Ridi R, Tallima H (2009) Schistosoma mansoni ex vivo lung-stage larvae excretory–secretory antigens as vaccine candidates against schistosomiasis. Vaccine 27(5):666–673

    Article  PubMed  CAS  Google Scholar 

  • Fu H, Subramanian RR, Masters SC (2000) 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40:617–647

    Article  PubMed  CAS  Google Scholar 

  • Henriksson ML, Francis MS, Peden A, Aili M, Stefansson K, Palmer R, Aitken A, Hallberg B (2002) A nonphosphorylated 14-3-3 binding motif on exoenzyme S that is functional in vivo. Eur J Biochem 269(20):4921–4929

    Article  PubMed  CAS  Google Scholar 

  • Hernández-González A, Valero ML, del Pino MS, Oleaga A, Siles-Lucas M (2010) Proteomic analysis of in vitro newly excysted juveniles from Fasciola hepatica. Mol Biochem Parasitol 172(2):121–128

    Article  PubMed  Google Scholar 

  • Hu FY, Yu XB, Ma CL, Zhou HJ, Zhou ZW, Li YW, Lu FL, Xu J, Wu ZD, Hu XC (2007) Clonorchis sinensis: expression, characterization, immunolocalization and serological reactivity of one excretory/secretory antigen-LPAP homologue. Exp Parasitol 117(2):157–164

    Article  PubMed  CAS  Google Scholar 

  • Hu FY, Hu XC, Ma CL, Zhao JH, Xu J, Yu XB (2009) Molecular characterization of a novel Clonorchis sinensis secretory phospholipase A(2) and investigation of its potential contribution to hepatic fibrosis. Mol Biochem Parasitol 167(2):127–134

    Article  PubMed  CAS  Google Scholar 

  • Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298(5600):1911–1912

    Article  PubMed  CAS  Google Scholar 

  • Kilani RT, Medina A, Aitken A, Jalili RB, Carr M, Ghahary A (2008) Identification of different isoforms of 14-3-3 protein family in human dermal and epidermal layers. Mol Cell Biochem 314(1–2):161–169

    Article  PubMed  CAS  Google Scholar 

  • Lalle M, Bavassano C, Fratini F, Cecchetti S, Boisguerin P, Crescenzi M, Pozio E (2010) Involvement of 14-3-3 protein post-translational modifications in Giardia duodenalis encystation. Int J Parasitol 40(2):201–213

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Cui SJ, Hu W, Feng Z, Wang ZQ, Han ZG (2009a) Excretory/secretory proteome of the adult developmental stage of human blood fluke, Schistosoma japonicum. Mol Cell Proteomics 8(6):1236–1251

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Xu L, Yan F, Yan R, Song X, Li X (2009b) Immunoproteomic analysis of the second-generation merozoite proteins of Eimeria tenella. Vet Parasitol 164(2–4):173–182

    Article  PubMed  CAS  Google Scholar 

  • Lun ZR, Gasser RB, Lai DH, Li AX, Zhu XQ, Yu XB, Fang YY (2005) Clonorchiasis: a key foodborne zoonosis in China. Lancet Infect Dis 5(1):31–41

    Article  PubMed  Google Scholar 

  • Luo QL, Qiao ZP, Zhou YD, Li XY, Zhong ZR, Yu YJ, Zhang SH, Liu M, Zheng MJ, Bian MH, Shen JL (2009) Application of signaling protein 14-3-3 and 26 kDa glutathione-S-transferase to serological diagnosis of Schistosomiasis japonica. Acta Trop 112(2):91–96

    Article  PubMed  CAS  Google Scholar 

  • MacCorkle RA, Tan TH (2005) Mitogen-activated protein kinases in cell-cycle control. Cell Biochem Biophys 43(3):451–461

    Article  PubMed  CAS  Google Scholar 

  • Masters SC, Pederson KJ, Zhang L, Barbieri JT, Fu H (1999) Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S of Pseudomonas aeruginosa. Biochemistry 38(16):5216–5221

    Article  PubMed  CAS  Google Scholar 

  • McGonigle S, Beall MJ, Feeney EL, Pearce EJ (2001) Conserved role for 14-3-3epsilon downstream of type I TGF beta receptors. FEBS Lett 490(1–2):65–69

    Article  PubMed  CAS  Google Scholar 

  • McGonigle S, Loschiavo M, Pearce EJ (2002) 14-3-3 proteins in Schistosoma mansoni; identification of a second epsilon isoform. Int J Parasitol 32(6):685–693

    Article  PubMed  CAS  Google Scholar 

  • Meek SE, Lane WS, Piwnica-Worms H (2004) Comprehensive proteomic analysis of interphase and mitotic 14-3-3-binding proteins. J Biol Chem Jul 279(31):32046–32054

    Article  CAS  Google Scholar 

  • Mhawech P (2005) 14-3-3 proteins—an update. Cell Res 15(4):228–236

    Article  PubMed  CAS  Google Scholar 

  • Mrowiec T, Schwappach B (2006) 14-3-3 proteins in membrane protein transport. Biol Chem 387(9):1227–1236

    Article  PubMed  CAS  Google Scholar 

  • Petosa C, Masters SC, Bankston LA, Pohl J, Wang B, Fu H, Liddington RC (1998) 14-3-3ζ binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J Biol Chem 273(26):16305–16310

    Article  PubMed  CAS  Google Scholar 

  • Polzien L, Baljuls A, Rennefahrt UE, Fischer A, Schmitz W, Zahedi RP, Sickmann A, Metz R, Albert S, Benz R, Hekman M, Rapp UR (2009) Identification of novel in vivo phosphorylation sites of the human proapoptotic protein BAD: pore-forming activity of BAD is regulated by phosphorylation. J Biol Chem 284(41):28004–28020

    Article  PubMed  CAS  Google Scholar 

  • Powell DW, Rane MJ, Joughin BA, Kalmukova R, Hong JH, Tidor B, Dean WL, Pierce WM, Klein JB, Yaffe MB, McLeish KR (2003) Proteomic identification of 14-3-3zeta as a mitogen-activated protein kinase-activated protein kinase 2 substrate: role in dimer formation and ligand binding. Mol Cell Biol 23(15):5376–5387

    Article  PubMed  CAS  Google Scholar 

  • Schechtman D, Winnen R, Tarrab-Hazdai R, Ram D, Shinder V, Grevelding CG, Kunz W, Arnon R (2001) Expression and immunolocalization of the 14-3-3 protein of Schistosoma mansoni. Parasitology 123(Pt 6):573–582

    PubMed  CAS  Google Scholar 

  • Siles-Lucas Mdel M, Gottstein B (2003) The 14-3-3 protein: a key molecule in parasites as in other organisms. Trends Parasitol 19(12):575–581

    Article  PubMed  Google Scholar 

  • Siles-Lucas M, Nunes CP, Zaha A (2000) Breijo M (2000) The 14-3-3 protein is secreted by the adult worm of Echinococcus granulosus. Parasite Immunol 22(10):521–528

    Article  PubMed  CAS  Google Scholar 

  • Siles-Lucas M, Merli M, Mackenstedt U, Gottstein B (2003) The Echinococcus multilocularis 14-3-3 protein protects mice against primary but not secondary alveolar echinococcosis. Vaccine 21(5–6):431–439

    Article  PubMed  CAS  Google Scholar 

  • Siles-Lucas M, Uribe N, López-Abán J, Vicente B, Orfao A, Nogal-Ruiz JJ, Feliciano AS, Muro A (2007) The Schistosoma bovis Sb14-3-3zeta recombinant protein cross-protects against Schistosoma mansoni in BALB/c mice. Vaccine 25(41):7217–7223

    Article  PubMed  CAS  Google Scholar 

  • Siles-Lucas M, Merli M, Gottstein B (2008) 14-3-3 proteins in Echinococcus: their role and potential as protective antigens. Exp Parasitol 119(4):516–523

    Article  PubMed  CAS  Google Scholar 

  • Sripa B, Kaewkes S, Sithithaworn P, Mairiang E, Laha T, Smout M, Pairojkul C, Bhudhisawasdi V, Tesana S, Thinkamrop B, Bethony JM, Loukas A, Brindley PJ (2007) Liver fluke induces cholangiocarcinoma. PLoS Med 4(7):e201

    Article  PubMed  Google Scholar 

  • Tzivion G, Avruch J (2002) 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J Biol Chem 277(5):3061–3064

    Article  PubMed  CAS  Google Scholar 

  • Van Der Hoeven PC, Van Der Wal JC, Ruurs P, Van Dijk MC, Van Blitterswijk J (2000) 14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1: negative regulation by 14-3-3 phosphorylation. Biochem J 345(Pt 2):297–306

    Article  Google Scholar 

  • Wang Y, Waldron RT, Dhaka A, Patel A, Riley MM, Rozengurt E (2002) Colicelli J (2002) The RAS effector RIN1 directly competes with RAF and is regulated by 14-3-3 proteins. Mol Cell Biol 22(3):916–926

    Article  PubMed  CAS  Google Scholar 

  • Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC (1997) The structural basis for 14-3-3: phosphopeptide binding specificity. Cell 91(7):961–971

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Development Program of China (973 program; No. 2010CB530000) and the Sun Yat-sen University Innovative Talents Cultivation Program for Excellent Tutors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbing Yu.

Additional information

Xiaoyun Wang and Wenjun Chen contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Chen, W., Li, X. et al. Identification and molecular characterization of a novel signaling molecule 14-3-3 epsilon in Clonorchis sinensis excretory/secretory products. Parasitol Res 110, 1411–1420 (2012). https://doi.org/10.1007/s00436-011-2642-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2642-7

Keywords

Navigation